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Abstract. Orchestration provides a general model of concurrent com-
putations. A minimal yet expressive theory of orchestration is provided
by Orc, in which computations are modeled by site calls and their or-
chestrations through a few combinators. Using Orc, formal verification of
correctness of orchestrations amounts to devising an executable formal
semantics of Orc and leveraging existing tool support. Despite its sim-
plicity and elegance, giving formal semantics to Orc capturing precisely
its intended behaviors is far from trivial primarily due to the challenges
posed by concurrency, timing and the distinction between internal and
external actions. This paper presents a semantics-based approach for for-
mally verifying Orc orchestrations using the K framework. Unlike pre-
viously developed operational semantics of Orc, the K semantics is not
directly based on the interleaving semantics given by Orc’s SOS spec-
ification. Instead, it is based on concurrent rewriting enabled by K. It
also utilizes various K facilities to arrive at a clean, minimal and elegant
semantic specification. To demonstrate the usefulness of the proposed
approach, we describe a specification for a simple robotics case study
and provide initial formal verification results.

Keywords: Formal semantics · Orc · K framework · Concurrency ·
Program verification

1 Introduction

Orchestration provides a general model of concurrent computations, although it
is more often referred to in the context of service orchestrations describing the
composition and management of (web) services. A minimal yet expressive theory
of orchestration is provided by the Orc calculus [20,22,21], in which computations
are modeled by site calls and their orchestrations through four semantically rich
combinators: the “parallel”, “sequential”, “pruning” and “otherwise” combina-
tors. Orc provides an elegant yet expressive programming model for concurrent
and real-time computations. While Orc’s simplicity and mathematical elegance
enable formal reasoning about its constructs and programs, its programming
model is very versatile and easily applicable to a very wide range of programming
domains, including web-based programming, business processes, and distributed
cyber-physical system applications, as amply demonstrated in [22,21].
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As for other theories and programming models, devising formal semantics for
Orc is of fundamental importance for several reasons, including theoretical ad-
vancements and refinements to its underlying theory, formal verification of its
programs, building formally verifiable implementations, and also for unambigu-
ous documentation. Furthermore, to better satisfy these goals, the semantics
has to be executable, enabling quick prototyping and simulation of Orc pro-
grams through a formally defined interpreter induced by the executable speci-
fication. The rewriting logic semantics project [17,18,8,19] has been advocating
this approach of formal executable semantics and has proved its value for many
programming models and languages, including widely used general-purpose lan-
guages like Java [10,11] and C [9].

Giving formal executable semantics to Orc constructs capturing precisely its
intended behaviors has been of interest since Orc’s inception due mainly to the
challenges posed by concurrency, timing and the distinction between internal
and external actions. A simple computation in Orc is modeled by a site call,
representing a request for a service, and more complex computations can be
achieved by combining site calls into expressions using one or more of Orc’s four
sequential and parallel combinators. A complete formal executable semantics
elegantly capturing its semantic subtleties, including its real-time behaviors and
transition priorities, was given in rewriting logic [16] and implemented in the
Maude tool [1,2]. This semantics is based on the original reference SOS semantic
specification of the instantaneous (untimed) semantics of Orc [22].

In what can be considered as a continuation of these efforts, this paper presents
a formal, executable semantics of Orc using the K framework [24,15], which is a
derivative of the rewriting logic framework, towards providing a K -based frame-
work for formally specifying and verifying Orc orchestrations. Unlike previously
developed operational semantics of Orc, the K semantics described here is not di-
rectly based on the interleaving semantics given by the reference SOS specification
of Orc. Instead, the K semantics provides the advantage of true concurrency en-
abled by K , where two (or more) concurrent transitions are allowed to fire even
in the presence of (read-access) resource sharing. It also utilizes K ’s specialized
notations and facilities to arrive at a clean, minimal and elegant semantic spec-
ification. Moreover, the semantics is executable in the associated K tool [6,14],
enabling rapid prototyping and formal analysis of Orc programs. Furthermore,
the semantics implicitly presents a generic methodology through which concur-
rency combinators are mapped to threads and computations in K , which can be
instantiated to other concurrency calculi. Finally, to demonstrate the usefulness
and applicability of the proposed approach, we describe a specification for a simple
robotics case study and provide initial formal verification results.

The paper is organized as follows. In Section 2 below, we overview the K

framework and Orc. Then, in Section 3, we present the K semantics of Orc. This
is followed by a discussion of some sample Orc programs in Section 4. The paper
concludes in Section 5 with a summary and a discussion of future work.
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2 Background

This section presents some preliminaries on the K framework and the K tool,
and introduces the Orc calculus along with some simple examples.

2.1 The K Framework

K [24,25] is a framework for formally defining the syntax and semantics of pro-
gramming languages. It includes several specialized syntactic notations and se-
mantic innovations that make it easy to write concise and modular definitions of
programming languages. K is based on context-insensitive term rewriting, and
builds upon three main concepts inspired by existing semantic frameworks:

– Computational Structures (or Computations): A computation is a task that
is represented by a component of the abstract syntax of the language or by
an internal structure with a specific semantic purpose. Computations enable
a natural mechanism for flattening the (abstract) syntax of a program into
a sequence of tasks to be performed.

– Configurations : A configuration is a representation of the static state of
a program in execution. K models a configuration as a possibly nested cell
structure. Cells are labeled and represent fundamental semantic components,
such as environments, stores, threads, locks, stacks, etc., that are needed for
defining the semantics.

– Rules : Rules give semantics to language constructs. They apply to configura-
tions, or fragments of configurations, to transform them into other configu-
rations. There are two types of rules in K : structural rules, which rearrange
the structure of a configuration into a behaviorally equivalent configura-
tion, and computational rules, which define externally observable transitions
across different configurations. This distinction is similar to that of equations
and rules in Rewriting Logic [16], and to that of heating/cooling rules and
reaction rules in CHAM [3].

To briefly introduce the notations used in K rules, we present a K rule used
for variable lookup (Fig. 1).

���� ����	
��������
�����

X :Param

V

�

X �→ V :Val

�������

�����������	

Fig. 1. Variable lookup rule as defined in K

The illustrated rule shows two bubbles, each representing a cell predefined
in the configuration. k is the computation cell, while context is the cell that



Towards Formal Verification of Orc 43

holds variable mappings. Each bubble can be smooth or torn from the left,
right, or both sides. A both-side-smooth cell means that the matched cell should
contain only the content specified in the rule. A right-side-torn cell means that
the matching should occur at the beginning of the cell; this allows for matching
when more contents are at the end of the matched cell. Similarly, a left-side-
torn cell means that the matching should occur at the end of the cell, so that
unspecified content can be on left of the specified term. A both-sides-torn cell
means that the matching can occur anywhere in the matched cell. Furthermore,
Upper-case identifiers such as X and V are variables to be referenced inside
the rule only; they can be followed by a colon meaning ”of type”. Finally, the
horizontal line means that the top term rewrites to the bottom term. What this
rule does is that it matches a Param X at the beginning of a k cell, matches the
same X in the context cell mapped to a Value V, and then rewrites the X in
the k cell to the value V.

K combines many of the desirable features of existing semantics frameworks,
including expressiveness, modularity, convenient notations, intuitive concepts,
conformance to standards, etc. One very useful facility of K when defining pro-
gramming languages is the ability to tag rules with built-in attributes, e.g.
strict, for specifying evaluation strategies, which are essentially notational
conveniences for a special category of structural rules (called heating/cooling
rules) that rearrange a computation to the desired evaluation strategy. Using
attributes, instead of explicitly writing down these rules protects against po-
tential specification errors and avoids going into unwanted non-termination. In
general, these attributes constitute a very useful feature ofK that makes defining
complex evaluation strategies quite easy and flexible.

Furthermore, K is unique in that it allows for true concurrency even with
shared reads, since rules are treated as transactions. In particular, instances
of possibly the same or different computational rules can match overlapping
fragments of a configuration and concurrently fire if the overlap is not being
rewritten by the rules. Truly concurrent semantics of K is formally specified by
graph rewriting [7]. For more details about the K framework and its features
and semantics, the reader is referred to [24,25].

An implementation of the K framework is given by the K tool [6,14], which
is based on Maude [4], a high-performance rewriting logic engine. Using the un-
derlying facilities of Maude, the K tool can interpret and run K semantic speci-
fications providing a practical mechanism to simulate programs in the language
being specified and verify their correctness. In addition, the K tool includes a
state-space search tool and a model checker (based, respectively, on Maude’s
search and LTL model-checking tools), as well as a deductive program verifier
for the targeted language. This allows for dynamic formal verification of Orc
programs in our case.

The K tool can compile definitions into a Maude definition using the kompile
command. It can then do several operations on the compiled definition using
its Maude backend. krun can execute programs and display the final configura-
tion. krun with the --search option displays all different solutions that can be
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reached through any non-deterministic choices introduced by the definition. An
option --pattern can be specified to only display configurations that match a
certain pattern. Moreover, --ltlmc directly uses Maude’s LTL model checker1.

TheK tool effectively combines the simplicity and suitability of theK framework
to defining programming languageswith the power and features ofMaude. A fairly
recent reference on theK tool that gently introduces its most commonly useful fea-
tures can be found in [6].

2.2 The Orc Calculus

Orc [20,22] is a theory for orchestration of services that provides an expressive
and elegant programming model for timed, concurrent computations. A site
in Orc represents a service (computation) provider, which, when called, may
produce, or publish, at most one value. Site calls are strict, i.e., they have a call-
by-value semantics. Moreover, different site calls in Orc may occur at different
times. For effective programming in Orc, a few internal sites are assumed, namely
(1) the if (b) site, which publishes a signal if b is true and remains silent otherwise,
(2) Clock , which publishes the current time value, and (3) Rtimer(t), which
publishes a signal after t time units.

Syntax of Orc. An Orc program d̃; f is a list of expression definitions d̃ followed
by an expression f . An Orc expression describes how site calls (and responses)
are combined in order to perform a useful computation. The abstract syntax
of Orc expressions is shown in Fig. 2. We assume a special site response value
stop, which may be used to indicate termination of a site call without necessarily
publishing a standard Orc value.

f, g ∈ Expression ::= 0 | p(p̃) | f | g | f >x> g | g <x< f | f ; g
p ∈ Parameter ::= x | w

x ∈ Variable w ∈ Value ∪ {stop}

Fig. 2. Abstract syntax of Orc expressions

An Orc expression can be: (1) the silent expression (0), which represents a site
that never responds; (2) a parameter or an expression call having an optional
list of actual parameters as arguments; or (3) the composition of two expressions
by one of four composition operators. These are: (1) the “parallel” combinator,
f | g, which models concurrent execution of independent threads of computation;
(2) the “sequential” combinator, f >x> g, which executes f , and for each value
w published by f creates a fresh instance of g, with x bound to w, and runs that

1 The latest release of K 3.5 depends on Maude as well as Java as backends. It is the
last version to support the Maude backend. Developments are running on the Java
backend to incorporate all of Maude’s features.
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instance in parallel with the current evaluation of f >x> g; (3) the “pruning”
combinator, f <x< g, which executes f and g concurrently but terminates g
once g has published its first value, which is then bound to x in f ; finally (4)
the “otherwise” combinator, f ; g, which attempts to execute f to completion,
and then executes g only if f terminates without ever publishing a value.

A variable x occurs bound in an expression g when g is the right (resp. left)
subexpression of a sequential composition f >x> g (resp. a pruning composition
g <x< f). If a variable is not bound in either of the two above ways, it is
said to be free. We use the syntactic sugar f � g (resp. g � f) for sequential
composition (resp. pruning composition) when x is not free in g. To minimize
use of parentheses, we assume the following precedence order (from highest to
lowest): � , | , � , ; .

To illustrate the informal meaning of the combinators, we list some examples
here. Many more examples and larger programs can be found in [22,12,5,13,21].

Example 1. Suppose we want to get the current price of gold, and that we
have three sites that provide this service: GoldSeek, GoldPrice, and Kitco. In
such a case, we only care about receiving an answer as soon as possible. So,
it would make sense to call these three sites in parallel. The expression would
be: (GoldSeek() | GoldPrice() | Kitco()). Now, suppose we want the price in a
different unit, say Euro/gram instead of USD/Oz. We need only one of these
three sites to publish a value. Observe the following Orc expression:

Converter(x,USD/Oz,EUR/gram) < x < (GoldSeek() |GoldPrice() | Kitco()).
The pruning combinator tells the parallel expression to give it only the first value
it publishes. As soon as it receives a value, it prunes the whole right-side expression
and passes the value to the left side, and binds it to x.

Example 2. Suppose we have a site called FireAlarm that when called, remains
silent unless a fire has been detected, in which case it publishes the fire’s location.
That information is sent to the fire department which needs to make a decision
to dispatch a fire engine. The fire department calls a site CalcNearestStation and
gives it the location of the fire to locate the nearest fire station. The response is
then passed on to a site Dispatch which will dispatch a fire truck from the given
station to the given location. The Orc expression would be:

FireAlarm() > fireLoc > CalcNearestStation(fireLoc)
> station > Dispatch(station, fireLoc)

After detailing our semantics of Orc in Section 3, we show the output of
executing some sample expressions in Section 4.

Operational Semantics of Orc. The reference semantics of Orc is the informal
but detailed semantics of Orc given by Misra and illustrated by many examples
in [20]. A structural operational semantics (SOS) for the instantaneous (untimed)
behaviors of Orc was also developed by Misra and Cook in [22]. An updated SOS
listing that includes rules for the semantics of the otherwise combinator and stop
site responses is given in [2].
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The SOS semantics specifies an interleaving semantics of the possible behav-
iors of an Orc expression as a labeled transition system with four types of actions
an Orc expression may take: (1) publishing a value, (2) calling a site, (3) making
an unobservable transition τ , and (4) consuming a site response. As discussed by
Misra and Cook in [22], the SOS semantics is highly non-deterministic, allowing
internal transitions within an Orc expression (value publishing, site calls, and τ
transitions) and the external interaction with sites in the environment (through
site return events) to be interleaved in any order. Therefore, a synchronous se-
mantics was proposed in [22] by placing further constraints on the application
of SOS semantic rules, effectively giving internal transitions higher priority over
the external action of consuming a site response.

A timed SOS specification extending the original SOS with timing was also
proposed [26]. The timed SOS refines the SOS transition relation into a relation
on time-shifted Orc expressions and timed labels of the form (l, t), where t is
the amount of time taken by a transition. In this extended relation, a transition

step of the form f
(l,t)

↪−→ f ′ states that f may take an action l to evolve to f ′ in
time t, and, if t �= 0, no other transition could have taken place during the t time
period. To properly reflect the effects of time elapse, parts of the expression f
may also have to be time-shifted by t. The semantics described in [26] abstracted
away the non-publishing events as unobservable transitions, which is the level of
abstraction we assume in the K semantics we describe next.

3 K-Semantics of Orc

The semantics of Orc in K is specified in two modules: (1) the syntax module,
which defines the abstract syntax of Orc in a BNF-like style along with any
relevant evaluation strategy annotations, and (2) the semantics module, which
defines the structure of a configuration and the rules (both structural and com-
putational) that define Orc program behaviors. These modules are explained
in some detail in this section. The full K specification of Orc can be found at
(http://www.ccse.kfupm.edu.sa/∼musab/orc-k).

3.1 Syntax Module

Orc is based on execution of expressions, which can be simple values or site calls,
or more complex compositions of simpler subexpressions using one or more of its
combinators. Looking at Fig. 2 showing the abstract syntax of the Orc calculus,
the following grammar defined in K syntax is almost identical (with Pgm and
Exp as syntactic categories for Orc programs and expressions, respectively):

An Orc value, which could be an integer, a string, a boolean, or the signal

value, is syntactic sugar for a site call that publishes that value and halts.
A site call looks like a function call, having the site name and a list of actual

parameters we call Arguments. A site, when called, may publish a standard Orc
value or a special value stop, which indicates termination with no value being
published. A site call can result in publishing at most one value.

http://www.ccse.kfupm.edu.sa/~musab/orc-k
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Fig. 3. Syntax of Orc as defined in K

There are a few semantic elements, which appear in Fig. 3, that K allows
to define within the syntax module. The first is precedence, denoted by the
> operator. As mentioned in Section 2.2, the order of precedence of the four
combinators from highest to lowest is: the sequential, the parallel, the pruning,
and then the otherwise combinator. In addition, we prefer for simpler expressions
to be matched before complex ones; so, on top, we put Arg and Call.

The second semantic element that is defined within the syntax module of K is
right- or left-associativity. It is important to note that the parallel operator
is defined as right-associative, rather than fully-associative because K ’s parser
does not yet support full associativity. However, this is resolved in the semantics
by transforming the tree of parallel composition into a fully-associative soup of
threads as discussed in Section 3.2.

The third is strictness. strict(i) means that the ith term in the right hand
side of the production must be evaluated before the production is matched.

3.2 Semantics Module

This module specifies the semantics of the language using K rules. Each rule
specifies one or more rewrites, that take place in different parts of the configu-
ration. We first explain the structure of the configuration, followed by key rules.

Configuration. A configuration in K is a representation of a state consisting
of possibly nested cells. Fig. 4 shows the structure of our configuration. A cell
thread is declared with multiplicity *, i.e., zero, one, or more threads. Enclosed
in thread is the main cell k. k is the computation cell where we execute our
program. We handle Orc productions from inside the k cell.

The context cell is for mapping variables to values. The publish cell keeps
the published values of each thread, and gPublish is for globally published
values. props holds thread management flags. varReqs helps manage context
sharing. gVars holds environment control and synchronization variables. The
in and out cells are respectively the standard input and output streams. And
finally, defs holds the expressions defined at the beginning of an Orc program.
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Each cell is declared with an initial value. The $PGM variable, which is the
initial value of the k cell, tells K that this is where we want our program to
go (after it is parsed). So by default, the initial configuration, shown in Fig. 4,
would hold a single thread with the k cell holding the whole Orc program as the
Pgm non-terminal defined in the syntax above.

��������	
����

�

���

$PGM :Pgm
�

•Map

����	
�
•List

������

��

���	����
•Set

�����
•List

����	��

���	���

���	���

��

�	���

•Params

�	�������
•K

���

�	��

�	��

•List

�������
•List

� ���
•List

��
•List

���

!

Fig. 4. Structure of the configuration

K Rules. For clarity and convenience, we first illustrate the essence of the rules
as transformations in schematic diagrams. Then we show some representative
rules exactly as they are defined in K . Our schematic diagrams use the following
notations. Each box represents a thread while lines are drawn between boxes to
link a parent thread to child threads, where a parent thread appears above its
child threads. The positioning of a child thread indicates whether that thread is a
left-side child or a right-side child (which is needed by the sequential and pruning
compositions). Note that in the specification, this information is maintained
through meta thread properties. The center of a box holds the expression the
thread is executing. A letter v at the lower right corner of the box represents a
value which the thread has published. A letter P at the lower left corner denotes
the publishUp flag which basically tells the thread to move its published values
to its parent thread. Variable mappings such as x → v mapping a variable x to
a value v are displayed at the bottom of the box. Finally, the symbol ⇒ denotes
a rewrite.
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Fig. 5. Transformation rule of the parallel combinator

Fig. 6. Transformation rules of the sequential combinator

Combinators. Orc has four combinators, which combine subexpressions ac-
cording to four distinct patterns of concurrent execution, parallel, sequential,
pruning and otherwise.

Parallel Combinator. Given an expression f | g as shown in Fig. 5, the rule
creates a manager thread carrying a meta-function called PCM(x), short for
Parallel Composition Manager, where x is the count of sub-threads it is manag-
ing. Child threads are created as well for each of the expressions f , and g. This
of course extends to any number of subexpressions in the initial expression. For
example, f | g | h will transform to PCM(3) and so on, as each subexpression
will be matched in turn.

Sequential Combinator. The first rule of the sequential combinator, shown in
Fig. 6, creates a manager called SCM, short for Sequential Composition Manager;
and it creates one child that will execute f . The manager keeps three pieces of
information: x, the parameter through which values are passed to instances of
g; g, the right-side expression; and k, a count of active instances of g which is
initially 0.

Every time f publishes a value, the second rule in Fig. 6 creates an instance
of g with its x parameter mapped to the published value. The new instance will
work independently of all of f , the manager, and any other instance that was
created before. So in effect, it is working in parallel with the whole composition,
as is meant by the informal semantics [20].

Pruning Combinator. The idea of the pruning expression is to pass the first value
published by g to f as a variable x defined in the context of f . Regardless, f
should start execution anyway. If it needed a value for x to continue its execution,
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Fig. 7. Transformation rules of the pruning combinator

Fig. 8. Transformation rules of the otherwise combinator

it would wait for it. So, the first rule of the pruning combinator creates a manager
PrCM (short for Pruning Composition Manager), a thread executing f , and
another thread executing g. See Fig. 7. The second rule is responsible for passing
the published value from g to f and terminating (pruning) g. These two rules
are shown in Figures 10 and 11 as they are defined in K .

Fig. 9. Transformation rule of publishing values

Otherwise Combinator. The otherwise combinator is implemented in three rules
shown in Fig. 8. It starts by creating a manager called OthCM (short for Other-
wise Composition Manager) and a child thread to execute f . Then if f publishes
its first value, g is discarded and f may continue to execute and is given permis-
sion to publish. However, if f halts without publishing anything, the third rule
applies and the whole otherwise expression is replaced by g. As mentioned in
Section 2.2, stop is a special value that indicates that an expression has halted.

Publishing and Variable Lookup. Due to the uniform structure of thread
hierarchy common in the productions of all four combinators, defining general
operations like publishing and variable lookup become compositional.
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Fig. 10. First K rule of the Pruning Combinator
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Fig. 11. Second K rule of the Pruning Combinator
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A manager thread expecting values from a certain child simply sets a property
in the child called publishUp in the cell props. As pointed out earlier, in our
schematic drawings of the semantics, this property is denoted by a letter P in the
lower left corner of the thread box. See Fig. 9. In retrospect, The child receiving
the publishUp property might be itself a manager of a deeper composition,
awaiting values to be published up to it. This behavior creates a channel from
the leaves of the thread tree up to the root, which will publish the output of the
whole Orc program in the cell gPublish. Threads which are given the publishUp
property are:

– All children of a Parallel Composition Manager.
– All right-side instances of a Sequential Composition Manager
– The left-side thread of a Pruning Composition Manager
– The child of an Otherwise Composition Manager.

Such a channel is also evident when variable requests are propagated up the
tree, since every thread is allowed to access the context map of any of its an-
cestors. A variable request, carrying the requester thread’s ID, is propagated
recursively up the tree, through a specialized cell varReqs, until it is resolved or
reaches the root in which case it resets.

It is important to note that no manager is allowed to share the context of any
of its children with the others, nor is it allowed to access it. Otherwise, some
values could be accidentally overwritten if copied from one scope to another.

Synchronization and Time. The semantics of our (discrete) timing model
follows the standard semantics of time in rewrite theories implemented in Real-
Time Maude [23], in which time is modeled by the set of natural numbers cap-
tured by a clock cell in the configuration, and the effects of time lapse are
modeled by a δ function.

Effectively, the δ function is what advances time in the environment. It is
applied to the whole environment, and so it will be applied on all threads, and
on the environment’s clock to increment it. It will not have an effect on compu-
tations of internal sites, but only on timer sites and external sites that are yet to
respond. One such site is Rtimer(t), which publishes a signal after t time units.
The δ function’s effect can be directly seen on Rtimer in the following rule:

δ(Rtimer(t)) ⇒ Rtimer(t− 1), where t > 0.
Therefore, the semantics of the Rtimer site, and any timed site, is only realiz-

able through the δ function. When δ successfully runs on the whole environment,
it is said to have completed one tick.

4 Formal Analysis of Orc Orchestrations

In this section, we present an example showing the formal analysis that can
be done on Orc programs using the K tool. We defined external Orc sites to
simulate a robot moving around a room with obstacles. A layout of the room
we will be working with is shown in Fig. 12. We could of course work with a
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Fig. 12. Initial configuration of the robot environment

more complex environment, but the purpose here is a simple demonstration and
a proof of the concept. We first simulate the movement of the robot, and then
show an example of formal verification.

Robot Sites’ Semantics. Before running any example, we explain our seman-
tics of these robot sites. MoveFwd will cause the robot to move a distance of one
block in its direction. turnRight and turnLeft will rotate the robot, while stand-
ing on the same block, 90 degrees clockwise and counterclockwise respectively.
We also made each of these sites takes a certain amount of time to respond.
MoveFwd takes three time units while each of turnRight and turnLeft take one
time unit. Hitting an obstacle while trying to move forward will still consume
three time units but will turn on a flag called isBumperHit which will reset on
the next action.

4.1 Simulation

The robot starts at (1,0) facing north. Suppose that we want to move it towards
the star at (0,1). The following Orc program will do just that:

MoveFwd() � TurnLeft() � MoveFwd()
Running krun on the expression outputs the final configuration as shown in

Fig. 13. Some parts were omitted for space convenience. However, the important
parts are the position, direction and the isBumperHit flag. We can see that they
ended up as expected: the robot is at (1,0) facing west, and the bumper is not
hit. Notice also that the clock is at seven time units, the time it takes for two
MoveFwd ’s and one turnLeft.

Writing the same program again but this time adding another MoveFwd to
the end of the sequence makes the expression:

MoveFwd() � TurnLeft() � MoveFwd() � MoveFwd()
Running this will cause the robot to hit the wall. That will turn on the

isBumperHit flag as in Fig. 13. This time, the clock is at 10 time units, three
units more consumed by the additional MoveFwd.

4.2 Verification

Here, we show a simplistic example that demonstrates the formal verification
capabilities of K . First we introduce an element of nondeterminism. Consider
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<gVars >
"BotVars " |->

"direction" |-> (-1,0)
"position " |-> (0,1)
"is_bumper_hit" |-> false

"clock" |-> 7
</gVars >

<gVars >
"BotVars " |->

"direction" |-> (-1,0)
"position " |-> (0,1)
"is_bumper_hit" |-> true

"clock" |-> 10
</gVars >

Fig. 13. selected output of running simulations: example 1 (left), example 2 (right)

the Orc expression RandomMove() that is defined as:
MoveFwd() | TurnLeft() � MoveFwd() | TurnRight() � MoveFwd()
Executing this expression, the robot should nondeterministically choose be-

tween one of the paths separated by the parallel operator. Suppose we need
to know whether this program will cause the robot to hit an obstacle or
not. Running the program with krun --search --pattern and specifying
isBumperHit → true as the pattern will show all configurations where the robot
hits. The full command looks like this:

krun bot.orc --search --pattern "<gVars>... \"BotVars\" |->

(M:Map \"is_bumper_hit\" |-> B) </gVars> when B ==K true"

The output of that command shows only one solution; it shows a configura-
tion where the position is (1, 0), the initial position, and the direction is east.
Obviously, the robot reached there by picking the third choice, TurnRight() �
MoveFwd().

Now consider making two random moves in sequence: RandomMove() �
RandomMove(). Checking for all possible configurations where the robot hits
reveals five solutions while checking for when the robot reaches the star at (0,1)
shows two solutions. Searching in more complex environments with more com-
plex expressions reveals many more solutions.

We demonstrated the potential of exploiting K ’s state search capabilities for
purposes of formal verification. Other methods that K provides such as Maude’s
LTL model checker and Maude’s proof environment are sure to deliver more
in-depth verification.

5 Conclusion and Future Developments

In this paper, we have presented a first attempt at devising a formal executable
semantics for Orc in the K framework and how it may be used for verifying Orc
programs. The semantics is distinguished from other operational semantics by
the fact that it is not directly based on Orc’s original interleaving SOS seman-
tics. The semantics takes advantage of concurrent rewriting facilitated by the
underlying K formalism to capture its concurrent semantics and makes use of
K ’s innovative notation to document the meaning of its various combinators.

Due to subtleties related to timing and transition priorities, faithfully cap-
turing the Orc semantics is a nontrivial challenge for any semantic framework.
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We plan to continue extending and refining the semantics so that all such sub-
tleties are appropriately handled. Furthermore, executability of the semantics
does not just mean the ability to interpret Orc programs using the seman-
tics specification; it also means that dynamic formal verification, such as model
checking, of Orc programs can be performed, which is something that we plan
to demonstrate using the K tool with its Maude model checker. Moreover, an
investigation of how the resulting semantics relates to the existing rewriting logic
semantics would be an interesting future direction.
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