
Formal Specification and Analysis of Timing
Properties in Software Systems

Musab AlTurki1, Dinakar Dhurjati2, Dachuan Yu2, Ajay Chander2,
and Hiroshi Inamura2

1 University of Illinois at Urbana-Champaign, Urbana IL 61801, USA
alturki@illinois.edu

2 DOCOMO USA Labs, Palo Alto CA 94304, USA
{Dhurjati,Yu,Chander,Inamura}@docomolabs-usa.com

Abstract. Specifying and analyzing timing properties is a critical but
error-prone aspect of developing many modern software systems. In this
paper, we propose a new specification language and analysis framework
for expressing and analyzing timing behaviors of complex software sys-
tems. Our framework has the following significant benefits: a) it is ex-
pressive, b) it supports trace analysis and simulation of timing behaviors,
c) allows for verification of properties of specification, and d) checks for
common usage errors of timing constructs. The language constructs for
timing were chosen to be very flexible, suitable for expressing different
kinds of timing behaviors, and are inspired from timing constructs used
in previous languages like SDL. We define the formal semantics of our
language using a real-time rewrite theory. Since real-time rewrite theories
are executable in Real-Time Maude, our framework supports trace anal-
ysis and simulation of timing behavior for specifications. Furthermore,
the timed model checker for Real-Time Maude can be readily used for
analyzing and verifying various real-time properties of the specifications.
Finally, to prevent misuses of timing constructs that can be made possi-
ble due to their flexibility, we develop abstract interpretation based static
analysis tools that check for common usage errors. We believe that our
framework, with the above benefits, provides a significant step forward
in facilitating the use of formal tools for specification and analysis of
timing behaviors in software development.

1 Introduction

Due to increasing complexity of modern software systems, the likelihood of mak-
ing errors during the software design phase has increased exponentially. While
some of these errors might be detected during the testing phase, it is much more
cost effective to detect and correct these errors early during the design phase.
For this reason, formal specification and analysis tools are increasingly being
deployed to improve the quality of software design.

Many real-world software systems rely on components that have timing re-
quirements to be met. These may represent maximal timing constraints, such as
timeouts, minimal timing constraints, such as delays, or durational constraints,
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which combine both maximal and minimal constraints. Consequently, correct-
ness of such software systems depends not only on their functional requirements
but also on the non-functional timing requirements. Therefore, to be able to for-
mally reason about such requirements, methods and tools for the specification
and analysis of real-time requirements need to be developed.

There have been several attempts at developing formal analysis and veri-
fication tools for timing properties in software specifications (see [1] and the
references there) but there is a gap between the languages used by these tools
and what the current specification languages provide, making it hard to inte-
grate them into current design activities in the software development industry.
Most of these tools are based on timed formalisms, such as timed automata [2]
and timed Petri Nets [3], that typically sacrifice expressiveness for decidability.
While they provide efficient formal analysis and verification tools, such timed
formalisms are typically difficult to understand and use by the software specifi-
cation writer, which further limits their applicability in industry. Furthermore,
timing constructs in existing high-level specification languages are either restric-
tive (e.g. Erlang [4]) or flexible but at the cost of allowing many misuses while
not providing effective mechanisms to detect them (e.g. SDL [5]).

In this paper, we propose a simple but powerful specification language for ex-
pressing timing properties together with an integrated analysis framework that
makes available a suite of formal analysis tools for software designers. The lan-
guage constructs for timing were chosen to be very flexible, suitable for express-
ing different kinds of timing behaviors, and are inspired from timing constructs
used in previous languages like SDL. Due to this expressiveness, timing con-
structs used in other high level specification languages like SDL and UML can
be easily translated into constructs of our specification language. We define the
formal semantics of our language with rewrite rules in a real-time rewrite the-
ory [6]. Since real-time rewrite theories are executable in Real-Time Maude [7]
under few reasonable assumptions, our framework automatically supports trace
analysis and simulation of timing behavior for specifications. Furthermore, the
timed model checker for Real-Time Maude can be readily used for analyzing and
verifying various real-time properties of the specifications. Thus the integrated
analysis framework facilitates the use of formal specification tools by reducing
the gap between the specification language and the language used by the verifi-
cation tools. Finally, since the timing constructs are intended to be very flexible,
there is a possibility of misusing the constructs. To prevent such misuse, we de-
velop abstract interpretation based static analysis tools that check for common
usage errors.

The main benefits of our framework can be summarized as follows: (1) It is
an expressive framework that is capable of formally capturing software speci-
fications given in various specification languages; (2) it supports trace analysis
and simulation of timing behaviors; (3) it allows for verification of complex
properties of specifications; and (4) it can automatically check for common us-
age errors of timing constructs. We believe that our framework, with the above
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benefits, provides a significant step forward in facilitating the use of formal tools
for specification and analysis of timing behaviors in software development.

The rest of the paper is organized as follows. In Section 2 we present our
specification language, L and its semantics. This is followed in Section 3 with
a description of a prototype implementation of the language using Real-Time
Maude. In Section 4 we describe how the timing abstractions can be misused,
and then in Section 5 we describe our abstract interpretation based solution
to detect and prevent such misuses. In Section 6 we compare our approach to
related work in the area. Finally, we conclude in Section 7 with a summary of
our approach.

2 The Specification Language L

In this section, we introduce a high-level specification language L that is well-
suited for describing a spectrum of behaviors of various software systems, includ-
ing their timed behaviors. L is a simple, concurrent specification language that
is aimed to serve as a formal programming model for various user-level specifi-
cation languages, such as SDL and UML. The language is intended to provide a
unified, well-established specification framework for the analysis and verification
of such higher-level specifications. Beside providing a core language with formal
semantics for specification creation, management and analysis, the simplicity of
L directly translates into a simple formal model that can easily be analyzed and
manipulated.

While the language supports several imperative features for describing se-
quential computations, concurrency in L is modeled by asynchronously com-
municating processes that can be dynamically created or destroyed. A process
maintains a thread of sequential computation representing a simple component
in software. A process may create another process with a specified computational
behavior, or may destroy itself. Processes communicate by exchanging messages
asynchronously, and use timers as the basic timing abstraction to account for
timing behaviors. The syntax and semantics of L are described next.

2.1 Syntax and Examples

The syntax of L is shown in Figure 1. A constant expression in L can be either an
integer value, a boolean value, a literal string, or a variable name. Complex ex-
pressions can be constructed using standard arithmetic, relational, and boolean
composition operators.

Unlike expressions which evaluate to some constant value, commands do not
produce values, but are there for their side effects. A command in L can be
an assignment statement, a scoped declaration of a variable using a let state-
ment, a conditional statement, or a while loop statement. The language also has
a few process-level commands, which include creating a new process, destroy-
ing the current process, sending a message to a process, and receiving a mes-
sage. The body of the receive statement may consist of a list of exclusive case
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x, y ∈ Variable n ∈ Integer r ∈ String

e ∈ Expression ::= x | r | a | b
a ∈ Arithmetic Expression ::= n | a ◦a

b ∈ Boolean Expression ::= true | false | a •rel a | b •bool b | ¬b

c ∈ Command ::= x := e | let x = e in c | if b then c else c | while b c
| new x = y in c | destroy
| send e to e | receive x in {l ; default : c}
| set x to e | release x | {} | {c} | c ; c

l ∈ CaseList ::= ϵ | case e : c ; l
m ∈ Module ::= module x is c

Fig. 1. The abstract syntax of L

statements followed by a default statement. Timers are managed using two
constructs: set, for starting a timer, and release, for dropping a timer. The
expiration of a timer in a process triggers a signal that can be checked by
a receive command. Furthermore, commands can be grouped into command
blocks, and sequenced using the semicolon as a sequencing operator. Finally, a
specification in L may use an optional list of module declarations, serving as
templates for new processes.

A variable x is bound in c in the commands let x = e in c and new x = y in c,
and is bound in l and c of the receive command. Variables used in set and
release, called timer variables, are globally scoped variables and are assumed
to be distinct in a given specification for it to be meaningful. A variable is said
to be free if it is not bound.

For compactness, we use if b then c as syntactic sugar for a conditional
with an empty else branch, and receive x in c to denote a receive statement
with no case branches, i.e. receive x in {ϵ ; default : c}. We shall also use
let x1 = e1, x2 = e2 in c as a shorthand for two nested let commands.

Example. (Client) The specification shown in Figure 2 defines a client process
that interacts with the user and a server, and timeouts responses from the server,
for which it maintains two timers t1 and t2. Upon receiving a “resend” request
from the user, the process forwards a request to the server and sets a timeout
of 60 time units for the first response from the server using the timer variable
t1. There are three possibilities at this point; (1) a timeout occurs, which is
indicated by the incoming signal t1, and at which case the process restarts and
waits for another request from the user; (2) another request from the user is
received, at which case the client resets the timer t1, and sends a request to the
server; (3) a response from the server is received, at which case t1 is dropped
and a similar process is initiated for subsequent responses from the server using
another timer t2. For simplicity, the example does not specify how the client
actually processes incoming responses from the server.

We will refer to the Client example above in the rest of the paper to illustrate
various aspects of the specification framework. Below, we give a more precise
description of the semantics of L.
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module client is
let a = true , b = true in
receive o in — server id
while (true)

receive p in { — resend request from user
a := true ; b := true ;
while (a) {

set t1 to 60;
send “request” to o;
receive m in {

case t1 : a := false;
case “resend” : release t1;
default : {

release t1;
while (b) {

set t2 to 120;
receive m in {

case t2 : { b := false; a := false };
case “resend” : { release t2; b := false };
default : { release t2 } } } } } } }

Fig. 2. A specification in L for a client process with timeouts

2.2 Formal Semantics

We give the formal semantics of L as an object-oriented real-time rewrite theory
RL. The semantics is distributed and concurrent in that a state for a specification
in L consists of one or more process objects that are executed concurrently, and
which may interact with each other as time elapses.

Real-Time Rewrite Theories. A rewrite theory, a unit of specification in
rewriting logic [8], gives a formal description of a concurrent system including
its static state structure and dynamic behavior. A rewrite theory is a tuple
R = (Σ, E, R), with

– (Σ, E) a membership equational logic [9] theory with signature Σ and a set
of universally quantified equations and/or memberships E. The signature Σ
declares the sorts and operators to be used in the system specification, while
equations and memberships E algebraically specify the properties satisfied
by these operators.

– R a set of universally quantified, possibly conditional, rewrite rules specifying
the computational behavior of the system. A rewrite rule has the form:

r : t1 −→ t2 if C (1)

where r is a label, t1 and t2 are terms over Σ, and C is a conjunction of
equational or rewrite conditions. A rewrite rule gives a general pattern for a
possible change in the state of a concurrent system (See [10] for a detailed
account of generalized rewrite theories).
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A real-time rewrite theory [6] extends a regular rewrite theory with support
for modeling temporal behaviors of systems. In particular, in a real-time rewrite
theory Rτ = (Στ , Eτ , Rτ ): (i) the equational theory (Στ , Eτ ) contains a sort
for Time representing the time domain, which can be either dense or discrete,
and declares a system-wide operator that encapsulates the whole system being
modeled into a special sort GlobalSystem for managing time elapse, and (ii) the
set of rewrite rules Rτ is the disjoint union of two sets RI and RT , where RI

consists of instantaneous rewrite rules having the form (1) above and represent-
ing instantaneous transitions in the system, and RT consists of tick rewrite rules
modeling system transitions that take non-zero amount of time to complete. A
tick rewrite rule has the following form

r : {t1}
τ−→ {t2} if C

where τ is a term of sort Time representing the duration of time required to
complete the transition specified by the the rule. The global operator { } en-
capsulates the whole system into the sort GlobalSystem to ensure the correct
propagation of the effects of time elapse to every part of the system.

Semantic Infrastructure. We fix a sort V of values in L. Lists of values can be
constructed as fully associative lists of comma-separated values. An environment
σ is a mapping from variable names to values, specified in RL as an associative
list of entries of the form [x, v] with identity nil .

A state in the system is represented by a configuration consisting of a multi-set
of objects. The fundamental class of objects within a configuration is the Process
class. In addition to the process object identifier, a process object contains the
following fields: a name, an environment, a command, a field for the timer set of
the process, and a queue of incoming messages:

⟨id : Process | name : x, env : σ, cmd : c, tmr : T,msg : M⟩

The queue of messages M is simply a list of values, and T is a set of timer
records of the form {x, vt}, with vt a time value. A timer record in T represents
an active timer, which is a timer that has been started but is not yet expired or
handled.

Instantaneous Transition Rules. In RL, instantaneous transitions of L are
modeled by regular rewrite rules, which specify the behavior of a process within
a configuration based on the next command to be executed by that process.
The command field cmd of a process serves as a continuation that defines what
action to be taken next. For example, the rule labeled set below specifies the
semantics for setting a timer:

[set] : ⟨id : Process | env : σ, cmd : set x to a ; c′, tmr : T ⟩
−→ ⟨id : Process | env : σ, cmd : c′, tmr : {x, a ↓σ}, T ⟩
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where e ↓σ denotes the evaluation of e using the environment σ, while expiration
of a timer is captured by the timeout rule below:

[timeout] : ⟨id : Process | env : σ, cmd : receive x in C ; c′, tmr : {y, 0}, T ⟩
−→ ⟨id : Process | env : σ[x, y], cmd : cases(x, C); pop; c′, tmr : T ⟩

with cases(x, C) and pop as auxiliary continuation items for processing the body
of a receive statement. We note that the rules are given in the object-oriented
specification style, in which attributes within a process object that do not play
a role in the rule need not be mentioned. We assume that message exchanges
are instantaneous (take no time to complete) and are therefore modeled by
instantaneous rewrite rules.

2.3 Timed Semantics

Assuming R is a time value and C is a configuration, the tick rule in L that
models time elapse and its effects is as follows:

[tick] : {C} R−→ {δ(C, R)} if R ≤ mte(C) ∧ inactive(C)

There are several important observations to be made here:

– The function δ equationally propagates the effect of a time tick to all ob-
jects within the configuration C, which comprises decreasing all timer values
within all process objects by the amount R of the tick.

– The function mte equationally defines the maximum time elapse until the
next event of interest. This is a standard technique in RTM to specify upper
bounds on how much a clock is allowed to advance before the next event
in the configuration. In this case, the mte of a configuration of processes
is determined by the timer with the minimum time value among all sets of
timers in all processes:

mte(T, {x, vt}) = min(mte(T ), vt), mte(φ) = ∞

– The predicate inactive distinguishes states in which instantaneous (untimed)
transitions are enabled (also called active states) from those in which the only
possible transition is a tick transition advancing time (inactive states). The
predicate is used to restrict applications of the tick rule to inactive states
so that instantaneous transitions have precedence over time tick transitions.
This is to maintain the expected semantics of timers and to prune uninterest-
ing behaviors in which a configuration might appear to be progressing while
it is not (for example, advancing time without doing anything else). This
semantics enforces the fact that when a timer in a process expires, its signal
cannot be ignored and must be handled, either by releasing the timer or
by consuming its signal. For this semantics to be fully meaningful, however,
configurations may only assume non-Zeno behaviors (which are behaviors
in which time will always eventually have a chance to advance), which is a
common assumption for real-time specifications with logical time.
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3 Analysis of L Specifications in Real-Time Maude

Real-Time Maude (RTM) [7], which is based on Maude [11], provides a highly
efficient implementation of real-time rewrite theories. We have developed a pro-
totype in RTM for L that corresponds to the specification RL described above.
As an immediate consequence of specifying the formal semantics of L in RTM, we
obtain a simulator and several formal analysis tools essentially for free. Among
the analysis tools provided are: (1) the timed fair rewrite tfrew, which simu-
lates one possible behavior (a sequence of rewrite steps) of a specification up to a
given time bound; (2) the tsearch command, which performs timed breadth-first
search on the reachable state space from given an initial state, while looking for
a state matching a given term and satisfying a given semantic condition; and (3)
the timed model-checking command mc T |=t F in time <= R, which checks
for satisfiability of the linear temporal logic (LTL) formula F along paths starting
from the initial state T within the time bound R.

The prototype is specified as a real-time object-oriented module ML in RTM,
which is declared using the syntax tomod Name . . . tomend. To simplify analysis,
we assume a discrete time domain, implemented using the domain of natural
numbers extended with infinity, which can be specified by letting the module
ML extend RTM’s predefined module NAT-TIME-DOMAIN-WITH-INF.

We consider the Client specifications given in Figure 2 above to illustrate
the use of such formal tools. We use client to denote its specification in ML.
Since client is a template for a reactive process that communicates with a user
and a backend server, we assume an initial configuration system in which a user
object and a server object are defined in order to be able to perform analysis
on client. The initial configuration contains a server process object that upon
receiving a request sends out five responses, five time units apart, and a user
process object that sends two “resend” requests, the first at time 1, and the
other at time 20. To simplify the presentation of the analysis, another object,
called the Observer object, is used to record traces of events of interest along
with their time stamps.

3.1 Simulation and Prototyping

A sample run of system for a duration of 200 time units can be obtained by
issuing the following command (where some of the output is omitted for brevity):

Maude> (tfrew

system in time <= 200 .) Result ClockedSystem : {...

< oo : Obser | out :([6 : "t1: first response received"]

[11 : "t2: response received"] [16 : "t2: response received"]

[21 : "t2: resend before it expires"] [21 : "t1: first response received"]

[26 : "t2: response received"] [31 : "t2: response received"]

[36 : "t2: response received"] [41 : "t2: response received"]

[161 : "t2: expired"]) >

< p(1): Process | name: ’client, cmd: receive p in ... , tmr: empty >

< p(2): Process | name: ’server, cmd: receive m in ... , tmr: empty >

< p(3): Process | name: ’user, cmd: {}, ... , tmr: empty >} in time 200
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The result above shows that after 200 clock ticks, the system reaches a qui-
escent state where no more message exchanges exist or are scheduled, and no
timers are yet to be set or processed. As can be seen from the recorded trace,
a “resend” request from the user was received at time 21 while the client was
processing the third response from the server, immediately after which the client
resent the request and restarted processing. Since the server sends only five re-
sponses to a given request, we see the timeout at time 161 after the fifth response
had been received at time 41.

Furthermore, using timed search, one can verify, starting from system, the
property that the system will in fact never be in a quiescent state before that.

Maude> (tsearch system =>+ { CF:Configuration } such that
inactive({CF:Configuration}) and noAliveTimer(CF:Configuration)
in time <= 160 .)

rewrites: 217595 in 720ms cpu (720ms real) (301842 rewrites/second)
No solution

The arrow =>+ means states reachable by one or more rewrites from the given
state. The semantic condition inactive(CF) and noAliveTimer(CF) captures
exactly what it means for a state to be quiescent.

3.2 Model Checking Analysis

RTM also provides powerful time-bounded model-checking tools for verifying
general LTL formulas, representing both liveness and safety properties, which can
be immediately applied to specifications in L. The LTL formulas are based on a
set of atomic propositions that capture state properties of interest and a labeling
function that assigns to each state in the system a subset of atomic propositions
that are true in that state. Given a module M for some specification in L, this is
done in RTM by defining a module M’ that imports the module M and the internal
module TIMED-MODEL-CHECKER and specifies equationally the meanings of these
propositions and the labeling function. For our running example, client, we
would perform model checking against a module extension of the form:

(tomod MODEL-CHECK-CLIENT is
including TIMED-MODEL-CHECKER .
protecting CLIENT .
...
endtom)

where including and protecting represent module extension modes (see [11]).
The internal module TIMED-MODEL-CHECKER declares sorts for states State,
atomic propositions Prop, logical formulas Formula to which the various LTL
operators belong, and the logical time-bounded satisfaction operator |=t, among
several other things. Thus, within the module above, one can declare the follow-
ing two propositions (the keywords ops, var, and eq introduce, respectively,
operator declarations, variable declarations, and equations in Maude):
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ops first-response timeout : -> Prop .
var CF : Configuration . var O1 O2 : Output . var R : Time .
eq {CF < oo : Obser | out :(O1 [R : "t1: first response received"]

O2) > } |= first-response = true .
eq {CF < oo : Obser | out :(O1 [R : "t2: expired"] O2) > } |=

timeout = true .

The first proposition first-response is true in a state in which the client has
already received its first response from the server, while the other proposition
timeout is true in a state where the second timer has expired. States in which
a proposition does not hold need not be specified.

Using these proposition, we can verify a fairly complex property about the
system modeled by client: it is always the case that within the first 200 time
units and after receiving the first response from the server, the second timer will
eventually expire. This property holds since the server will cease to send out
responses after the first response, causing the client to eventually timeout. This
can be checked automatically using the model-checking command:

Maude> (mc system |=t [] (first-response -> <> timeout) in time <= 200 .)
rewrites: 164943 in 689ms cpu (693ms real) (239084 rewrites/second)
Result Bool : true

where [] denotes “always”, -> “implication”, and <> the “eventually” operator.
However, the property does not hold if we restrict traces to 100 time units.
The corresponding model-checking command presents a counter example trace
to that effect:

Maude> (mc system |=t [] (first-response -> <> timeout) in time <= 100 .)
rewrites: 35567 in 4332ms cpu (4345ms real) (8209 rewrites/second)
Result ModelCheckResult :
counterexample({{< od : Decls | dcl :(( module ’client is let a = true
...
[self,vpid(3)],msg : nil,name : ’user,tmr : empty >} in time 41,’tick})

4 Proper Use of Timing Abstractions

In order to be able to model a wide range of software systems with real-time
components, the timing abstractions of L are designed so that they are expressive
and flexible. However, such flexibility might enable unintended or undesirable
usage patterns of these abstractions. We overview in this section possible usage
problems with timers and discuss automatic means to detect them.

We consider again our working example specification Client shown in Fig-
ure 2. There are several possible misuses of timer-related constructs in Client
which would render the specification erroneous or unnecessarily complex. For
instance, by dropping any one of the release commands in this specification or
by dropping any one of the receive case branch statements, we introduce possible
execution paths along which a timer is set but never released or processed. More-
over, by adding any new release command or case statement to this specification,
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we essentially introduce dead code that is either superfluous or even unreach-
able along any execution path in the specification. We note that such problems
become more pronounced as specifications get larger and more complex.

The fundamental reason behind such potential problems is flexibility. Indeed,
timers of a process are globally scoped within that process. Furthermore, the set
and release statements are not tightly coupled together, which implies that com-
plex timer patterns are possible. Finally, the unified treatment of timer signals
and incoming messages in receive statements might also add to the conceptual
complexity of properly using timers. It is worth mentioning that most of these
characteristics are shared with timer-based specification languages such as SDL,
making these languages, too, vulnerable to mishandled timers.

The problem, which we call Mishandled Timers, identifies usage patterns of
timers that could potentially cause semantic or structural problems with speci-
fications in L. It consists of three sub-problems:

1. Unhandled timers: a timer is not properly handled in a specification if there
exists a possible execution path along which a timer is set but then neither
dropped nor its signal is ever consumed.

2. Extra release commands: a release command is extra if it attempts to drop
a timer that is always properly handled along all execution paths to it.

3. Unreachable case branches: a receive case branch is unreachable if the timer
whose signal is being checked is always properly handled along all execution
paths to that case branch.

The significance of such analysis revolves around both specification correctness
and optimization. Unhandled timers immediately indicate a problem in the spec-
ification, since the meaning of an unhandled timer is not clear. Both extra release
commands and unreachable case branches might also be the result of an acci-
dentally missed set command and can therefore change the intended semantics.
In the case that no set command was missed, such superfluous statements can
as well be eliminated to optimize the specification.

Fortunately, the mishandled timers problem can be formulated as a data-flow
analysis problem, and can therefore be checked automatically using standard
static analysis means. Instead of defining a static checker that is specific to the
mishandled timers problem, we develop a general static analysis framework to
be integrated with the specification language L so that different other static
analyses can be easily specified and used. We describe below the static analysis
framework and its instantiation to the mishandled timers problem.

5 Static Analysis of Specifications in L

The formal analysis tools and techniques provided by RTM and described above
are very useful for analyzing specifications in L and verifying properties about
them. However, due to the dynamic nature of the analysis, such properties are
necessarily specific to the specification in hand, and an initial state must be
constructed for them to be carried out. For example, for Client, the property
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that the system will never be in a quiescent state before 160 time units have
passed applies only to this specification and was verified against one possible
initial state defined by system.

Another class of formal verification techniques with which generic properties
can be automatically verified can be obtained through static analysis. Static
analysis is an automated formal analysis technique that is based on the static
structure of specifications rather than their dynamic behavior. The analysis al-
lows for the verification of a different class of properties dealing with the proper
use of constructs in L. These properties are generic in the sense that they are
not tied to any particular specification and do not depend on any given initial
state. As a result, a library of static analysis properties can be built and reused
to check specifications in L for common bugs or to perform common optimiza-
tions, which considerably increases the usefulness and effectiveness of L and its
associated tools as a software specification framework.

5.1 A Generic Abstract Interpretation Framework

The approach to static analysis we use is based on the well-studied framework
of Abstract Interpretation [12], which enables building safe approximations of a
given concrete semantics, so that if a property holds in the abstract semantics,
it also holds in the concrete semantics. Specifically, we use control flow graphs
(CFGs) to build such abstract interpretations. A CFG for a specification S
consists of a set of nodes, representing commands (or basic blocks) in S, and a
set of directed edges, representing possible immediate flows between commands.

We have specified our abstraction framework for L as an equational theory
and implemented it in Maude as a functional module. The module defines an
operator cfg, which, given a specification in L, builds a flattened graph as a
set of nodes and directed edges grouped together using the associative and com-
mutative empty juxtaposition operator. A node in a CFG is a pair < I : B >,
consisting of an identifier I and a statement B corresponding to the command
represented by that node, while a directed edge is a triple [ I1 : S : I2 ],
consisting of identifiers I1 and I2 for the source and target nodes, respectively,
and an abstract state S on that edge, which is used for analysis. The CFG con-
struction process is defined inductively over the structure of commands in L,
and computation of fixed points is specified by straight-forward equations that
are mostly facilitated by Maude’s efficient associative-commutative matching al-
gorithms on the flattened graph. For instance, the following equation specifies
the effect of the assignment command (ceq introduces a conditional equation):

ceq [I1 : S : I] < I : x := e > [I : S’ : I2]
= [I1 : S : I] < I : x := e > [I : S’’ : I2]

if S’’ := assign(S, x, e) /\ S’ < S’’ .

where assign(S, x, e) is the transfer function for assignment and < is the
strict partial ordering relation on abstract states. The particular definitions of
transfer functions, abstract states, and the ordering relation are dependent on
the specific property to be analyzed and are therefore left unspecified in the
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abstraction framework. Below, we give an instantiation of it for the analysis of
the mishandled timers problem.

5.2 Mishandled Timers

We formulate the mishandled timers problem as a data-flow analysis problem,
and then use the abstract interpretation framework described above to automat-
ically check for it. The analysis computes, at each point in a specification, the
set of timers that may have not been properly handled on some path to that
point in the specification.

By computing such intermediate states, we can build decision procedures to
detect misuses of timers as follows. We first define the abstract domain to be a
simple lattice {⊤, ⊥} with the usual ordering. A timer variable is mapped to ⊤
in an abstract state if it references a timer that may not have been handled in
that state. Otherwise, it is mapped to ⊥. The abstract state is a valuation from
timer variable names to values in the lattice. Both the lattice ordering and the
join operation are extended in the usual way to abstract states.

Then, we define, for each command in L, the transfer function that speci-
fies the effect of that command on the abstract state. Most of these functions
are fairly trivial to define for this problem since most functions are the iden-
tity function on states, except for the commands set and release, for which
the transfer functions respectively map variable names to ⊤and to ⊥. Further-
more, the transfer function for the conditional command is defined to reflect
the possible change in state in the true and false branches of several other com-
mands, such as receive case statements. Finally, we define the following operators
that will automatically check the three problems : (1) utimers for unhandled
timers, (2) ers for extra release commands, and (3) ecs for unreachable case
branches.

12 while b

receive m14 b := false19

a := false20

22case resend default24

23 b := false

t2

t2 t2

t2 t2 t2

t2 t2

t2

t2 t2

t2t2

set t213 case t115 case t218

16

release t221

25 release t2

t2

17 b := false

release t2

27 endwhile

26 endrec

Fig. 3. A partial CFG computed by the mishandled timers analysis for the innermost
while loop of a modified (buggy) version of the client example; dashed nodes are the
ones added, while the dotted node is a release t2 node that was removed . Only timer
variables mapped to ⊤ in abstract states are shown on edges.
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To illustrate the use of these operators, we apply them to an instrumented
version of the client specification, named BuggyClient, to which we introduced
some instances of the mishandled timers problem. The CFG for the innermost
while (b) in the modified specification along with internal results of the analysis
algorithm are shown in Figure 3. As is clear from the figure, timer t2 is not
properly handled, which can be automatically realized by the command1

Maude> red utimers(cfg(BuggyClient)) .
rewrites: 47660 in 58ms cpu (59ms real) (807919 rewrites/second)
result State: [t2,top]

and which is resulting from a missing release statement within the case branch
labeled 22. Moreover, the release command labeled 21 is extraneous, which can
be checked by issuing the command:

Maude> red ers(cfg(BuggyClient)) .
rewrites: 47675 in 59ms cpu (59ms real) (794702 rewrites/second)
result Node: < 21 : release t2 >

Similarly, by executing the command red ecs(cfg(BuggyClient)), we can ver-
ify unreachability of the case branch labeled 15 in the figure.

6 Related Work

Real-time languages, forwhich a large body of research exists, differwidely in terms
of the timing abstractions they support and their semantics depending mainly on
their targeted application domains. The closest languages to our design of tim-
ing abstractions are SDL [5,13], a high-level specification language, and Erlang [4],
which is a programming language based on the Actors model [14] for distributed,
soft real-time systems. Both languages are based on a concurrent process model,
and they both use timers and check for timer signals as incoming messages. How-
ever, our design has a stricter timers semantics than that of SDL and is much more
expressive than Erlang’s (some nested timing patterns, which can be expressed in
L, are not expressible in Erlang). There has also been some attempts at improving
the timing abstractions in SDL for specification writers, such as the work in [15]
on extending timers with annotations and supporting transitions with urgencies.
Many other timed high-level languages exist [16,17,18].

Real-time rewrite theories and their implementations in Real-Time Maude
have been used in the specification and analysis of various protocols and al-
gorithms [19,20,21,22]. Our application is fundamentally different though as it
applies these methods to a specification language rather than a protocol or an
algorithm, which has subtle consequences in terms of design and analysis.

Finally, the technique of abstract interpretation [12] has been successfully
applied over the years to static analysis (see [23] for a recent survey, and [24] on
its use for data-flow analysis). In particular, the technique has been applied to
validation of timing requirements [25] and for more efficient model checking [26].
1 The Maude command red or reduce evaluates the given expression according to the

equations and memberships of the current module.
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7 Conclusion

In this paper, we presented a new simple specification language with formal
semantics that can be used to specify and analyze timing behaviors of software
systems. Our specification language is flexible and supports, through translation,
the timing models of various other high level specification languages like SDL
and UML. Our formal semantics is defined as a real-time rewrite theory. This
automatically gives us the ability to perform simulation and trace analysis using
the RTM tool. Furthermore, we take advantage of the timed model checker
provided with RTM, to provide an integrated analysis framework for software
designers. Finally we show how to use traditional abstract interpretation based
approaches to detect common misuses of timing constructs, thus automatically
preventing some of the common errors that a software designer can make when
using the flexible timing constructs. Together, we believe that our approach
provides a significant step forward in facilitating the use of formal tools for
specification and analysis of timing behaviors in software development.

Acknowledgements. Many thanks to José Meseguer for his comments.
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