
Towards a Verified Model of the Algorand

Consensus Protocol in Coq

Musab A. Alturki1, Jing Chen2, Victor Luchangco2, Brandon Moore1,
Karl Palmskog3, Lucas Peña4, and Grigore Roşu4

1 Runtime Verification, Inc., Urbana, IL, USA
{musab.alturki,brandon.moore}@runtimeverification.com

2 Algorand, Inc., Boston, MA, USA
{jing,victor}@algorand.com

3 The University of Texas at Austin, TX, USA
palmskog@acm.org

4 University of Illinois at Urbana Champaign, IL, USA
{lpena7,grosu}@illinois.edu

Abstract. The Algorand blockchain is a secure and decentralized public
ledger based on pure proof of stake rather than proof of work. At its core
it is a novel consensus protocol with exactly one block certified in each
round: that is, the protocol guarantees that the blockchain does not
fork. In this paper, we report on our effort to model and formally verify
the Algorand consensus protocol in the Coq proof assistant. Similar to
previous consensus protocol verification efforts, we model the protocol
as a state transition system and reason over reachable global states.
However, in contrast to previous work, our model explicitly incorporates
timing issues (e.g., timeouts and network delays) and adversarial actions,
reflecting a more realistic environment faced by a public blockchain.
Thus far, we have proved asynchronous safety of the protocol: two differ-
ent blocks cannot be certified in the same round, even when the adver-
sary has complete control of message delivery in the network. We believe
that our model is sufficiently general and other relevant properties of the
protocol such as liveness can be proved for the same model.

Keywords: Algorand · Byzantine consensus · blockchain · Coq.

1 Introduction

The Algorand blockchain is a scalable and permissionless public ledger for se-
cure and decentralized digital currencies and transactions. To determine the next
block, it uses a novel consensus protocol [1,3] based on pure proof of stake. In
contrast to Bitcoin [6] and other blockchains based on proof of work, where safety
is achieved by making it computationally expensive to add blocks, Algorand’s
consensus protocol is highly efficient and does not require solving cryptographic
puzzles. Instead, it uses cryptographic self-selection, which allows each user to
individually determine whether it is selected into the committees responsible for
generating the next block. The self-selection is done randomly and independently

2 M. A. Alturki et al.

by every participant, with probability proportional to its stake. Private commu-
nication channels are not needed, and the committees propagate their messages
in public. They reach Byzantine consensus on the next block and certify it, so
that all users learn what the next block is without any ambiguity. That is, rather
than waiting for a long time so as to be sure that a block will not disappear from
the longest chain like in Bitcoin, the Algorand blockchain does not fork, a cer-
tified block is immediately final and transactions contained in it can be relied
upon right away. The Algorand blockchain guarantees fast generation of blocks
as long as the underlying propagation network is not partitioned (i.e., as long as
messages are delivered in a timely fashion). The Algorand consensus protocol,
its core technology, and mathematical proofs of its safety and liveness properties
are described in [3,1,2].

The focus of this work is to formally model and verify the Algorand con-
sensus protocol using the Coq proof assistant. Automated formal verification
of desired properties adds another level of assurance about its correctness, and
developing a precise model to capture the protocol’s runtime environment and
the assumptions it depends on is interesting from a formal-methods perspective
as well. For example, [11] proves state machine safety and linearizability for the
Raft consensus protocol in a non-Byzantine setting, and [7] focuses on safety
properties of blockchains and, using a largest-chain-based fork-choice rule and
a clique network topology, proves eventual consistency for an abstract parame-
terized protocol. Similar to existing efforts, in this work we define a transition
system relation on global protocol states and reason inductively over traces of
states reachable via the relation from some initial state. As in previous efforts, we
abstract away details on cryptographic primitives, modeling them as functions
with the desired properties.

However, our goal and various aspects of the Algorand protocol presented
new challenges. First, our goal is to verify the protocol’s asynchronous safety
under Byzantine faults. Thus, we explicitly allow arbitrary adversarial actions,
such as corruption of users and replay of messages. Also, rather than relying
on a particular network topology, we explicitly model global time progression
and message delivery deadlines in the underlying propagation network. In par-
ticular, the Algorand protocol assumes that messages are delivered within given
deadlines when the network is not partitioned, and that messages may be arbi-
trarily delayed and their delivery is fully controlled by the adversary when the
network is partitioned. We have captured these aspects in our model. Moreover,
as mentioned above, the Algorand protocol uses cryptographic self-selection to
randomly select committees responsible for generating blocks. As mechanizing
probabilistic analysis is still an open field in formal verification, instead of try-
ing to mechanize randomized committee selection, we identify properties of the
committees that are used to verify the correctness of the protocol without ref-
erence to the protocol itself. We then express these properties as axioms in our
formal model. Pen-and-paper proofs that these properties hold (with overwhelm-
ing probability) can be found in [3,1].

Towards a Verified Model of the Algorand Consensus Protocol in Coq 3

It is worth pointing out that our approach is based on reasoning about global
states and allows an adversary to arbitrarily coordinate actions among corrupted
users. This is different from [8], which formally verifies the PBFT protocol under
arbitrary local actions. Finally, [10] uses distributed separation logic for consen-
sus protocol verification in Coq with non-Byzantine failures. Using this approach
to verify protocols under Byzantine faults is an interesting avenue of future work.

Thus far, we have proved in Coq the asynchronous safety property of the
protocol: namely, two different blocks can never be both certified in the same
round, even when the adversary has complete control of message delivery in the
network. We believe that our model is sufficiently general and other relevant
properties of the protocol such as liveness can be proved for the same model.

2 The Algorand Consensus Protocol

In this section, we give a brief overview of the Algorand consensus protocol with
details salient to our formal model. More details can be found in [3,5,1].

All users participating in the protocol have unique identifiers (public keys).
The protocol proceeds in rounds and each user learns a certified block for each
round. Rounds are asynchronous: each user individually starts a new round
whenever it learns a certified block for its current round.

Each round consists of one or more periods, which are different attempts to
generate a certified block. Each period consists of several steps, in which users
propose blocks and then vote to certify a proposal. Specifically, each user waits a
fixed amount of time (determined by network parameters) to receive proposals,
and then votes to support the proposal with the best credential as described
below; these votes are called soft-votes. If it receives a quorum of soft-votes, it
then votes to certify the block; these votes are called cert-votes. A user considers
a block certified if it receives a quorum of cert-votes. If a user doesn’t receive a
quorum of cert-votes within a certain amount of time, it votes to begin a new
period; these votes are called next-votes. A next-vote may be for a proposal, if
the user received a quorum of soft-votes for it, or it may be open. A user begins
a new period when it receives a quorum of next-votes from the same step for the
same proposal or all being open; and repeats the next-vote logic otherwise.5

Committees. For scalability, not all users send their messages in every step.
Instead, a committee is randomly selected for each step via a technique called
cryptographic self-selection: each user independently determines whether it is
in the committee using a verifiable random function (VRF). Only users in the
committee send messages for that step, along with a credential generated by the
VRF to prove they are selected. Credentials are totally ordered, and the ones
accompanying the proposals are used to determine which proposal to support.

5 The actual logic for next-votes is more complex, but roughly speaking the next-votes
are classified as either for proposals or open.

4 M. A. Alturki et al.

Network. Users communicate by propagating messages over the network. Mes-
sage delivery is asynchronous and may be out-of-order, but with upper bounds
on delivery times. However, messages may not be delivered within these bounds
if the network is partitioned.

Adversary. The adversary can corrupt any user and control and coordinate cor-
rupted users’ actions: for example, to resend old messages, send any message for
future steps of the adversary’s choice, and decide when and to whom the mes-
sages are sent by them. The adversary also controls when messages are delivered
between honest users within the bounds described above, and fully controls mes-
sage delivery when the network is partitioned. The adversary cannot, however,
control more than 1/3 of the total stake participating in the consensus protocol.

3 Model

Our model of the protocol in the Coq proof assistant is in the form of a transition
system, encoded as an inductive binary relation on global states. The transition
relation is parameterized on finite types of user identifiers (UserId) and values
(Value); the latter abstractly represents blocks and block hashes.

User and Global State. We represent both the user state and global state as Coq
records. For brevity, we omit a few components of the user state in this paper
and only show some key ones, such as the Boolean indicating whether a user is
corrupt, the local time, round, period, step, and blocks and cert-votes that have
been observed. The global state has the global time, user states and messages
via finite maps [4], and a Boolean indicating whether the network is partitioned.

Record UState := mkUState {
corrupt: bool; timer: R;

round: N; period: N; step: N;
blocks: N → seq Value;
certvotes: N → N → seq Vote;

(* ... omitted ... *)
}.

Record GState := mkGState {
network_partition: bool;

now: R;
users: {fmap UserId → UState};
msgs: {fmap UserId → {mset R * Msg}};

msg_history: {mset Msg};
}.

State Transition System. The transition relation on global states g and g’, writ-
ten g ! g’, is defined in the usual way via inductive rules. For example, the rule
for adversary message replay is as follows:

step_replay_msg : ∀ (pre:GState) uid (ustate_key : uid ∈ pre.(users)) msg,
¬ pre.(users).[ustate_key].(corrupt) → msg ∈ pre.(msg_history) →
pre ! replay_msg_result pre uid msg

Here, replay_msg_result is a function that builds a global state where msg is
broadcasted. We call a sequence of global states a trace if it is nonempty and
g ! g’ holds whenever g and g’ are adjacent in the sequence.

Towards a Verified Model of the Algorand Consensus Protocol in Coq 5

Assumptions. To enable expressing relevant properties about our transition re-
lation, we add assumptions about committees and quorums. This includes a
function committee that determines self-selected committees, which we use to
express properties of overlapping user quorums, as in the following statement,
which says that for any two sets (quorums) of users of size at least tau, that are
both subsets of the committee for the given round-period-step triple, there is an
honest user for the step who belongs to both quorums:

Definition quorum_honest_overlap_statement (tau:N) :=

∀ (trace:seq GState) (r p s:N) (q1 q2:{fset UserId}),
q1 ⊆ committee r p s → #|q1| ≥ tau →
q2 ⊆ committee r p s → #|q2| ≥ tau →
∃ (honest_voter : UserId), honest_voter ∈ q1 ∧ honest_voter ∈ q2 ∧
honest_during_step (r,p,s) honest_voter trace.

Similarly, we capture that a block was certified in a period as follows:

Definition certified_in_period (trace:seq GState) (tau r p:N) (v:Value) :=

∃ (certvote_quorum:{fset UserId}),
certvote_quorum ⊆ committee r p 3 ∧ #|certvote_quorum| ≥ tau ∧
∀ (voter:UserId), voter ∈ certvote_quorum →
certvoted_in_path trace voter r p v.

This property is true for a trace if there exists a large-enough quorum of users
selected for cert-voting who actually sent their votes along that trace for the
given period (via certvoted_in_path, which we omit here). This is without loss of
generality since a corrupted user who did not send its cert-vote can be simulated
by a corrupted user who sent its vote but the message is received by nobody.

4 Asynchronous Safety

The analysis of the protocol in the computational model permits forking, albeit
with negligible probability [1,3]. In contrast, we specify and prove formally in the
symbolic model with idealized cryptographic primitives that at most one block is
certified in a round, even in the face of adversary control over message delivery
and corruption of users. We call this property asynchronous safety:

Theorem asynchronous_safety : ∀ (g0:GState) (trace:seq GState) (r:N),

state_before_round r g0 → is_trace g0 trace →
∀ (p1:N) (v1:Value), certified_in_period trace r p1 v1 →
∀ (p2:N) (v2:Value), certified_in_period trace r p2 v2 →
v1 = v2.

Here, the first precondition state_before_round r g0 states that no user has
taken any actions in round r in the initial global state g0, and the second pre-
condition is_trace g0 trace states that trace follows! and starts in g0.

Note that it is possible to end up with block certifications from multiple
periods of a round. Specifically, during a network partition, which allows the
adversary to delay messages, this can happen if cert-vote messages are delayed
enough for some users to advance past the period where the first certification was
produced. However, these multiple certifications will all be for the same block.

6 M. A. Alturki et al.

Proof Outline. The proof of asynchronous safety proceeds by case-splitting on
whether the certifications are from the same period or different periods. For the
first and the easier case, p1 = p2, we use quorum hypotheses to establish that
there is an honest user that contributed a cert-vote to both certifications. Then,
we conclude by applying the lemma no_2_certvotes_in_p, which establishes that
an honest user cert-votes at most once in a period (proved by exhaustive analysis
of possible transitions by an honest node):

Lemma no_2_certvotes_in_p : ∀ (g0:GState) (trace:seq GState) uid (r p:N),
is_trace g0 trace →
∀ idx1 v1, certvoted_in_path_at idx1 trace uid r p v1 →
user_honest_at idx1 trace uid →

∀ idx2 v2, certvoted_in_path_at idx2 trace uid r p v2 →
user_honest_at idx2 trace uid → idx1 = idx2 ∧ v1 = v2.

The second case (p1 (= p2) is proved with the help of proving an invariant.
This invariant first holds in the period that produces the first certification —
say, p1 for v1— and keeps holding for all later periods of the same round. The
invariant is that no step of the period produces a quorum of open next-votes,
and any quorum of value next-votes must be for v1.

5 Conclusion
We developed a model in Coq of the Algorand consensus protocol and outlined
the specification and formal proof of its asynchronous safety. The model and the
proof open up many possibilities for further formal verification of the protocol,
most directly of liveness properties. In total, our Coq development [9] contains
around 2000 specification lines and 4000 lines of proof scripts.

References

1. Algorand blockchain features (2019), https://github.com/algorandfoundation/
specs/blob/master/overview/Algorand_v1_spec-2.pdf

2. Chen, J., Gorbunov, S., Micali, S., Vlachos, G.: Algorand Agreement: Super fast
and partition resilient Byzantine agreement. Cryptology ePrint Archive, Report
2018/377 (2018), https://eprint.iacr.org/2018/377

3. Chen, J., Micali, S.: Algorand: A secure and efficient distributed ledger. Theoretical
Computer Science 777, 155–183 (2019)

4. Cohen, C.: finmap (2019), https://github.com/math-comp/finmap
5. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling

byzantine agreements for cryptocurrencies. In: SOSP. pp. 51–68 (2017)
6. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
7. P̂ırlea, G., Sergey, I.: Mechanising blockchain consensus. In: CPP. pp. 78–90 (2018)
8. Rahli, V., Vukotic, I., Völp, M., Esteves-Verissimo, P.: Velisarios: Byzantine fault-

tolerant protocols powered by Coq. In: ESOP. pp. 619–650 (2018)
9. Runtime Verification, Inc.: Algorand verification (2019), https://github.com/

runtimeverification/algorand-verification
10. Sergey, I., Wilcox, J.R., Tatlock, Z.: Programming and proving with distributed

protocols. PACMPL 2(POPL), 28:1–28:30 (2018)
11. Woos, D., Wilcox, J.R., Anton, S., Tatlock, Z., Ernst, M.D., Anderson, T.: Planning

for change in a formal verification of the Raft consensus protocol. In: CPP. pp. 154–
165 (2016)

https://github.com/algorandfoundation/specs/blob/master/overview/Algorand_v1_spec-2.pdf
https://github.com/algorandfoundation/specs/blob/master/overview/Algorand_v1_spec-2.pdf
https://eprint.iacr.org/2018/377
https://github.com/math-comp/finmap
https://github.com/runtimeverification/algorand-verification
https://github.com/runtimeverification/algorand-verification

