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Abstract

The Adaptive Selective Verification (ASV) protocol was recently proposed as an effective and efficient DoS
countermeasure within the shared channel model, in which clients and attackers probabilistically share com-
munication bandwidth with the server. ASV has been manually shown to satisfy some desirable availability
and bandwidth consumption properties. Due to the probabilistic nature of the protocol and its underlying
attacker model, it is intrinsically difficult to build a faithful model of the protocol with which one may
automatically verify its properties. This paper fills the gap between manual analysis and simulation-based
experimental analysis of ASV, through automated formal analysis. We describe a formal model of ASV
using probabilistic rewrite theories, implemented in a probabilistic extension of Maude, and show how it can
be used to formally verify various characteristics of ASV through automated statistical quantitative model
checking analysis techniques. In particular, we formally verify ASV’s connection confidence theorem and a
slightly more general bandwidth consumption theorem of ASV. This is followed by a statistical comparison
of ASV with non-adaptive selective verification protocols. We conclude with remarks on possible further
development and future work.
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1 Introduction

Protocol security specification and verification involves meeting quite different types
of requirements. The most thoroughly studied requirements are those of secrecy,
authenticity and integrity, which are typically expressed as safety properties, and
for which a rich body of work and a wide range of formal analysis tools are available.
To verify these properties, a very powerful Dolev-Yao-like attacker, who has com-
plete control of the netwok, is assumed, so that formal requirements of a secrecy,
authenticity and integrity nature are verified for a given protocol in the presence of
such an attacker.

For security requirements such as availability, considerably less work has been
done (but see the papers [18,24,17] and our discussion of related work in Section 6).
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Consider, for example, a protocol availability requirement such as being resistant to a
Denial of Service (DoS) attack. Such a requirement cannot be dealt with within the
standard frameworks and tools for protocol specification and verification developed
to verify secrecy, authenticity and integrity because of the following challenges:

(i) New protocol models are needed. For example, many DoS defense mechanisms
are probabilistic in nature, whereas usual cryptographic protocol formal models
used for secrecy, authenticity and integrity are not.

(ii) New attacker models are needed. A Dolev-Yao attacker is both too powerful to
faithfully represent a DoS attack, since complete control of the network means
by definition that it can always succeed in such an attack, and too coarse,
since to faithfully model a DoS attack we need quantitative information on
the estimated amount of resources available to the attacker, something not
available at all in a Dolev-Yao-like attacker model.

(iii) What counts as a DoS attack requires precise modeling. That is, how to prop-
erly formalize availability requirements themselves is not an obvious matter.
To begin with, unlike security properties such as secrecy, which do not allow
of degrees (either the protocol ensures secrecy or it does not), it is perfectly
reasonable to ask whether a given DoS protection mechanism is more effective
than another one. The point is that we must now move from Boolean-valued
(true or false) requirements such as secrecy to quantitative requirements such
as effectiveness in protecting against DoS.

(iv) Formal verification techniques now need to deal with real-time, probabilities,
and quantitative properties. This means that the standard methods used for
verifying secrecy, authenticity and integrity properties, such as invariants and
reachability analysis, standard temporal logic and model checking, or various
specialized theorem proving schemes may not be directly usable in the realm
of availability properties.

In this paper we further develop and apply to a novel DoS protection mechanism
recently proposed in [14] a new rewriting-based approach to the formal specifica-
tion and verification of security properties such as DoS-resistance initiated in [2]
and further applied to other protocol properties beyond security in [13,15]. This
rewriting-based approach directly addresses and answers the above-mentioned chal-
lenges (i)–(iv).

The way our approach addresses challenges (i)–(ii) is by modeling both the
(typically probabilistic and real-time) protocol and the DoS attacker by means of
probabilistic rewrite rules [3], that is, rewrite rules whose right-hand side result is
not uniquely determined by the matching substitution for the rule’s left-hand side,
but depends instead on a probability distribution.

The way challenge (iii) is answered is by generalizing properties from Boolean-
valued ones (such as standard temporal logic formulas expressing, say, a secrecy
invariant) to quantitative, real-valued formulas, which can measure various quan-
tities and performance values in our system. This is done by using the QuaTEx
quantitative, probabilistic temporal logic defined in [3]. Finally, challenge (iv) is an-
swered by formally verifying quantitative formal requirements expressed in QuaTEx
about a protocol formally specified as a probabilisitc rewrite theory by statistical
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model checking in the sense of [22], in which the model checker, once a QuaTEx
formula and a desired degree of statistical confidence are specified, requests a suf-
ficiently large number of Monte Carlo simulations of the rewrite theory allowing
verification of the QuaTEx formula. In our experiments, the Monte Carlo simu-
lations are performed using the Maude rewrite engine, and the statistical model
checking of the QuaTEx properties is preformed by the VeStA tool [22,3], which
has a Maude interface.

We view the form of formal specification and automated formal verification sup-
ported by the rewriting-based approach just described as providing a useful middle
ground for the analysis of protocol availability properties such as DoS resistance be-
tween the other two methods currently available, namely: (i) by-hand mathematical
analysis of the protocol to establish some of its properties analytically, typically un-
der somewhat idealized assumptions; and (ii) analysis based on standard simulation
techniques and tools.

As we show for the Adaptive Selective Verification (ASV) DoS-resistant protocol
[14] that we specify and formally verify in this paper, our techniques complement
and add significant analytic power to those in (i)–(ii). Specifically, we confirm by
automatic statistical model checking techniques analytic results proved by hand in
[14]. And we also confirm, wich the much stronger level of assurance provided by
statitical model checking, various protocol properties suggested by the simulation
analyses reported as well in [14]. In this way, a considerably higher level of assurance
can be gained for both analytical properties proved by hand, and for properties
suggested by simulation analyses. Furthermore, this assurance can be gained for
scenarios and realistic deployment conditions too complex to be amenable to by-
hand mathematical analysis.

2 Background

2.1 Probabilistic Rewrite Theories

Rewriting logic is an expressive formalism that unifies in a natural way different con-
currency models [19]. The unit of specification in the logic is a rewrite theory, which
gives a formal description of a concurrent system including its static state structure
and dynamic behavior. A rewrite theory R = (Σ, E,R) consists of a signature Σ
that declares the sorts and operators to be used in the system specification, a set
E of equations and memberships on Σ describing algebraically the state structure
of the system, and a set R of rewrite rules specifying the computational behavior
of the system. A rewrite rule has the following form:

(∀−→x ,−→y ) r : t(−→x ) −→ t′(−→y ) if C(−→x )

where the set of variables −→y are typically included in −→x , r is a label, and C is a
conjunction of equational or rewrite conditions. The operational meaning of such a
rewrite rule is that if there exists a substitution θ such that θ(t) matches a subterm
s in the system, and θ(C) is satisfied, then s may rewrite to θ(t′). A rewrite rule,
therefore, gives a general pattern for a possible change or transition in the state of
a concurrent system (See [4] for a detailed account of generalized rewrite theories).
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Many realistic systems are probabilistic in nature, and thus cannot be directly
specified as rewrite theories of the form described above. For this purpose, prob-
abilistic rewrite theories, which extend regular rewrite theories with probabilistic
rules, have been developed [21]. Assuming −→x and −→y are disjoint, a probabilistic
rewrite rule is of the following form:

(∀−→x ,−→y ) r : t(−→x ) −→ t′(−→x ,−→y ) if C(−→x ) with probability −→y := π(−→x )

A probabilistic rule introduces on its right-hand side term new variables −→y , the
values of which depend on a probability distribution function π parametrized by
θ(−→x ), where θ is a matching substitution satisfying the condition C.

To illustrate the operational meaning of a probabilistic rewrite rule, consider the
following rule, which is borrowed from the battery-operated clock example in [6]:

clock(t, c)−→ if B then clock(t+ 1, c− (c/1000.0)) else broken(t, c)
with probability B := Bernoulli(c/1000.0)

The rule specifies how a clock transitions to its next state, which is either a regular
operational state clock(t, c) or a broken state broken(t, c), with t the current time
and c the current battery charge. As the clock ticks, its battery charge decreases.
Whether the clock transitions to an operational or a broken state depends on the
outcome of a Bernoulli trial with success probability of c/1000.0 used by the new
variable B. Since the probability of success in a Bernoulli trial is proportional to
the current battery charge, the clock will have a higher chance of failing as time
elapses and the battery charge decreases.

In general, probabilistic rewrite theories can model different probabilistic sys-
tems with discrete or continuous probability distribution functions. Furthermore,
they can express models involving both probabilistic and non-deterministic features.
The reader is referred to [3] for a rigorous definition of probabilistic rewrite theories.

An executable implementation of probabilistic rewrite theories is provided by
Maude [6], an efficient rewriting logic engine. Probabilistic theories are supported
in Maude by essentially sampling from probability distributions using a pseudo-
random number generator function random(s), with s a seed, and a counter function
counter that rewrites to the next natural number with an internal strategy. Due
to space limitations, we refer the reader to [3] for the details.

2.2 Statistical Analysis using VeStA

Through their implementation in Maude, probabilistic rewrite theories can be ana-
lyzed statistically using VeStA 2.0 [23]. In order to apply statistical model checking
techniques to such theories, a rich, quantitative temporal logic for specifying real-
valued quantities is needed. For this reason, we use Quantitative Temporal Expres-
sions (QuaTEx) specified in [3]. In QuaTEx, real-valued state and path functions
are used instead of boolean state and path predicates to quantitatively specify
properties about probabilistic models. QuaTEx supports parameterized recursive
function declarations, an if-then-else construct, and a next operator©, which when
combined, allow for an expressive language for real-valued temporal properties. Ex-
ample QuaTEx expressions appear in Section 5 below. For a detailed account of
QuaTEx’s syntax and semantics, the reader is referred to [3].
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QuaTEx is supported by the VeStA tool, which has an interface to Maude.
Thus, given a QuaTEx path expression and a Maude module specifying a proba-
bilistic rewrite theory, statistical quantitative analysis is performed by evaluating
the expected value of the path expression against computation paths obtained by
Monte Carlo simulations. VeStA’s statistical model checking algorithm evaluates
these quantities with respect to two confidence parameters: α and δ, which are
user-provided. Specifically, when computing the expected value of a QuaTEx ex-
pression E, the output of the algorithm is a (1 − α)100% confidence interval with
size bounded above by δ for the random variable associated to E. VeStA will per-
form as many Monte Carlo simulations as needed to arrive at a confidence interval
with the given parameters

A requirement for VeStA’s statistical model checking algorithm to be cor-
rectly applicable is that the probabilistic model has to avoid any unquantified
non-determinism [3]. That is, a state in the model should only evolve into two
or more possible different states if and only if each possibility has an associated
probability of taking place. In probabilistic rewrite theories, this means that there
should not exist a non-deterministic choice of rules to apply, or terms or subterms
to match. This requirement can be easily satisfied, however, and [3] lists simple suf-
ficient conditions for the satisfaction of this property in the context of actor-based
rewrite specifications. We adopt a specification style originally developed by [2]
that satisfies these conditions, and discuss it in Section 4.2 in some detail.

3 Tha Shared Channel Model and the ASV Protocol

As was discussed above, the Dolev-Yao model is inappropriate for the analysis of
DoS properties. A more appropriate model for this purpose is the shared channel
model [8]. In this model, attackers and legitimate clients probabilistically share a
communication channel to the server. Unlike the Dolev-Yao model, an attacker does
not have full control over the channel. However, an attacker may replay modified
(or faked) versions of previously seen legitimate packets at some maximum rate,
specified as a parameter in the model.

The Adaptive Selective Verification (ASV) protocol [14] is a cost-based, DoS-
resistant protocol in which bandwidth is the currency. ASV assumes the shared
channel model as its underlying attack model. The key idea of the protocol is
for clients to spend more bandwidth to compete with attacker bandwidth usage,
and for the server to selectively process incoming requests. A client attempts to
adapt to the current level of attack by exponentially replicating its requests (up to
a threshold) as the sensed severity of attack increases. The server implements a
reservoir sampling algorithm to collect a random sample of the incoming requests
and process them at its mean processing rate.

More precisely, we denote the server’s mean processing rate by S, and the server
and client timeout periods by Ts and Tc, respectively. The current client request
rate is denoted by ρ, with the assumption that ρ ∈ [ρmin, ρmax]. Similarly, The
current attack rate is denoted by α ∈ [αmin, αmax]. The client replication threshold
is specified by the protocol as 2J , where J = dlog(αmax/ρmin)/ log(2)e (called the
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retrial span). Under the ASV protocol, the server and clients behave as follows:

Client. When a client first arrives, it initializes its retries count j ← 0, and then
sends a single copy of its request to the server. If the client receives and acknowl-
edgement within Tc time units, the client is accepted and quits. Otherwise, it
increments j (j ← j + 1) and then sends 2j copies of its request to the server.
This process is repeated until either an acknowledgement is received, or the retrial
threshold is reached, i.e. j > J . In the latter case, the client fails and quits.

Server. The server first initializes its window count k ← 1, and its request count
j ← bSTsc + 1. During the kth window, the server attempts to collect the first
bSTsc incoming requests. At this point, there are two cases:
(i) If it times out before the reservoir is filled, the server sends an acknowledge-

ment for each request in the reservoir, empties its reservoir, increments its
window count k, and repeats the process for the next window.

(ii) If the reservoir is filled before a timeout occurs, the server places the jth
incoming request in the reservoir with probability p← bSTsc/j and discards
it with probability 1 − p. If the request is to be placed in the reservoir, the
server replaces a request in the reservoir selected uniformly at random with
the accepted request. The server increments its request count and processes
the next request in the same way. This step is repeated until the server times
out (signaling the end of the current window). Once a timeout occurs, the
server empties its reservoir after acknowledging its requests, increments k,
resets j to bSTsc+ 1, and the whole process is repeated for the next window.

Despite the simplicity of the protocol, analyzing it manually turns out to be a
fairly demanding task [14]. In the following, we describe a model of the protocol that
enables automatic statistical verification of its properties and analyze the results.

4 Formal Modeling of ASV in Maude

Our model of the ASV protocol is based on a representation of actors in rewriting
logic [3], which is built using the logic’s Maude object-based programming frame-
work [6]. Within this framework, the system state is represented by a configuration,
which is a soup of objects and messages built using an associative and commutative
juxtaposition operator with an identity element none. The exact forms of objects
and messages comprising a configuration are application-specific. In our specifica-
tion, an object is a term of the form 〈name : Oid | A〉, where Oid is a unique object
identifier, and A is a set of attribute-value pairs of the form attr i : val i, representing
the state of the object. A message is a term of the form Oid ← C, with Oid the
target object id and C the contents of the message. Within a configuration, asyn-
chronous message passing can be modeled by rules that rewrite a sub-configuration
consisting of a message and its target object to another sub-configuration consisting
of an updated version of the object and possibly one or more new messages:

〈name : Oid |A〉(Oid ← C) −→ 〈name : Oid |A′〉(Oid1 ← C1) . . . (Oidn ← Cn)

We begin by describing the main entities of the model below.

6



AlTurki, Meseguer and Gunter

4.1 Model Components

The ASV model specifies a simple topology in which multiple client objects and an
attacker object share a communication channel with the server. The three main
classes of objects, namely server, client, and attacker objects, are described below.

Server. The server object maintains three attributes: a buffer attribute reqlist
that holds incoming requests between server timeouts, a REQ packet count attribute
reqcnt that is used in determining the probability of accepting an incoming REQ
when the buffer is full, and a counter for incoming legitimate client requests.

〈name : SN | reqlist : L, reqcnt : R, cnt : I〉

A server object, with id SN , accepts two kinds of messages: (i) a connection request
message of the form SN ← REQ(Oid), with Oid the object id of the client or
attacker object which initiated the request, and (ii) an internal timeout message
SN ← timeout , which signals a new server time window. Self-addressed messages
are commonly used in actor-based systems to schedule internal events [3].

Client. A client object maintains the current number of retries and the current
replication count which are required to implement the adaptive protocol. It also
contains four other attributes: a reference to the server with which the client com-
municates, the arrival and service times of the client, and a status variable indicating
whether the client is waiting, has connected, or failed to establish a connection.

〈name : CN |server : SN , retries : J, repcnt : K, atime : T, stime : T ′, status : Q〉

A Client, named CN , accepts two kinds of messages: (i) a connection acknowledge-
ment message of the form CN ← ACK (SN ) from the server identified by SN , and
(ii) an internal message of the form CN ← poll that schedules client timeouts.

Attacker. The attacker object is a simple object that maintains only one at-
tribute, namely, a reference to the server object on which the attack is to be carried
out: 〈name : X | server : SN 〉. An attacker object accepts the same kinds of mes-
sages a client object accepts although it exhibits a different behavior upon receiving
them, as we shall see in Section 4.2.

In addition to the three classes above, a fourth, auxiliary class of objects is
the generator class, of which a single object is used in the configuration to model
new clients coming in at a rate ρS, with S the server’s mean processing rate. The
generator object maintains a counter for generating fresh client identifiers and the
name of the server to which generated clients will attempt to connect: 〈name :
G | cnt : I, server : SN 〉. The generator object G uses a self-addressed message of
the form G ← spawn to schedule the creation of the next client object every 1/ρS
time units.

4.2 Model Dynamics

Beside the objects described above, a configuration contains a few other components
that support its dynamic behavior. As was discussed in Section 2.2, in order for
it to properly support statistical model checking, the specification must avoid any
unquantified non-determinism. We adopt a specification style originally developed
by [2] to support this requirement. In this style, the configuration uses a scheduler
that stores a list of scheduled messages to be made active and ready for consumption
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S Mean server processing rate

Ts Server timeout (window size)

Tc Client timeout

ρmin, ρmax Min and max client request rates

αmin, αmax Min and max attack rates

J Client retrial span

initDelay Initial client generation delay

delay Message transmission delay

drop Message drop probability (network loss rate)

Limit Duration of a sample run

Fig. 1. Model parameters

by the appropriate object in the configuration. The scheduler, which is a term of
the form {t | L}, with t the current global clock of the configuration and L a list of
scheduled messages, enforces the fact that only one message can be made active at
any given instant of time. A scheduled message is a term of the form [t,m, d], where
t is the time at which the message is scheduled for delivery, m is the message itself,
and d is a drop flag that is used when modeling lossy channels to indicate whether
the message is to be dropped or kept.

The use of the scheduler object also provides a mechanism for managing the
elapse of time and its effect on the configuration. This is achieved with the help of
an operator mytick , which is used to extract the next message from the scheduler
and update the current global time accordingly. The specification uses this operator
repeatedly to advance time and process successive messages from the scheduler until
the given time limit, specified by a parameter in the model, is reached. This is
enforced by a flag element in the configuration of the form flg(B,R), where B

is a boolean indicating whether the specified limit is reached, and R is a number
representing the current round of rewrites. This flexible mechanism enables us to
specify the granularity of a round in terms of the amount of time we wish to run a
Monte Carlo simulation.

Other components in the configuration include variables crate and arate main-
taing, respectively, current client request and attacker request rates for the current
window (for variable client request and/or attacker rates).

There are several parameters of interest that are supported by the model. These
are listed in Figure 1.

Now that the building blocks of the model have been introduced, we describe
next the behavior of the model. In order to save space and avoid presentation clutter,
we describe the events associated with the rewrite rules specifying the model’s
dynamic behavior instead of including the rules verbatim from the specification.

Client sending a REQ [CSend]. When it is time for the client to send a new set
of REQs to the server, which is signaled by the self-addressed poll message, and
the client is in the waiting state, meaning that the client is yet to get connected
and has not yet given up retrying, the [CSend] rule applies. In this rule, two
cases are considered. If the client has not yet reached its retrial span limit, it
sends K replicated REQ messages to the server, with K the value of its repcnt
attribute, increments its retries counter retries, updates the replication count for
the next attempt, and schedules another poll message after Tc time units. The
scheduler inserts the new messages into its list for proper scheduling. Otherwise
if the client has reached its limit, the client changes its status to failed and will
no longer attempt to connect to the server.

Client receiving an ACK [CRec, CDscrd]. Once a client receives an acknowl-
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edgement message from the server while in the waiting state, the client consumes
the message and changes its status to connected. Accepted clients do not send
new messages. If an acknowledgement is received while the client has already
been accepted or failed, the acknowledgment message is just discarded.

Attacker sending a REQ [ASend]. Once it is time for the attacker to send a
new (fake) REQ message to the server, which is signaled by the poll message, the
attacker emits such a message and uses the current attack rate α to schedule the
next REQ message after 1/(αS) time units.

Attacker ignoring ACKs [ADscrd]. Obviously, an acknowledgment message
from the server in response to an attacker REQ is just noise, and is discarded.

Server handling a REQ [ProcessREQ]. When a server receives a connection
request message REQ(Oid) from object Oid, it first checks whether its request
buffer stored in the reqlist attribute is full or not. If the buffer is not yet full, the
request is simply added to the list. Otherwise, if the buffer has already reached
its maximum capacity, the server tosses a biased coin with success probability R,
given by its reqcnt attribute, and uses the outcome of this experiment to decide
on whether to replace an existing request selected uniformly at random with the
incoming request or to drop the incoming request altogether. The server also
increments its client request count reqcnt in preparation for the next incoming
client request. This rewrite rule is probabilistic and involves sampling from both
a Bernoulli distribution and a uniform distribution.

In either case, the server updates its counter cnt appropriately for the number
of incoming legitimate client requests for analysis purposes.

Server timing out [Timeout]. Once a server times out, indicated by the self-
addressed timeout message, the server resets its reqcnt counter, sends out an
acknowledgment message for every connection request stored in its buffer, and
then clears the buffer. The server also re-schedules an internal timeout message,
and updates the client request and attacker rates (if variable client and attacker
rates are used) in preparation for the new time window.

5 Statistical Model Checking Analysis

We have used the ASV model described above to perform statistical quantitative
model checking analysis of various QuaTEx formulas using VeStA, which runs
Monte Carlo simulations on the model through its interface with Maude to pro-
duce a point estimator of the quantity of interest for each of these formulas, given a
desired confidence interval for the experiment and its maximum tolerable size. For
this purpose, we specify the nature of the quantities to be statistically estimated.
The quantities specified as QuaTEx formula declarations are listed below.

Connection ratio. This is the ratio of clients successfully connected to the total
number of clients in a configuration:

connRatio(t) = if time() > t then countConnected()/countClients()
else © (connRatio(t))

with time() a state function that returns the global clock time in the current
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configuration. The number of accepted clients countConnected() is computed by
equationally counting the number of clients whose status field is connected, while
the total number of clients countClients() can be easily extracted from the client
counter attribute maintained in the client generator object.

Average TTS. This is the ratio of the total time-to-service added up over all
accepted clients to the number of accepted clients:

avgTTS (t) = if time() > t then sumTTS ()/countConnected()
else © (avgTTS (t))

The total TTS sumTTS () is computed by adding up the time intervals given by
the arrival time and service time attributes of every accepted client. The number
of accepted clients is computed as described above.

Bandwidth usage. This is the amount of bandwidth used by legitimate clients
attempting to establish a connection with the server. Bandwidth usage is mea-
sured in terms of the number of legitimate requests and is given by the legitimate
client request counter attribute of the server object.

bw(t) = if time() > t then bwUsage() else © (bw(t))

Connection Confidence. This is the probability that a given client will success-
fully establish a connection to the server:

connConfidence(i, t) = if time() > t then hasConnected(i)
else © (connConfidence(i, t))

This is computed using a simple function hasConnected(i) that, given a client id,
returns 1.0 if the client has actually connected to the server and 0.0 otherwise.

Throughout this section, we assume a 95% confidence interval with size at most
0.05. We also fix S, the mean server processing rate, to 600 packets per time units,
the server and client timeouts, Ts and Tc, to 0.4 time units, and the initial generation
delay, initDelay , to 0.2 time units, unless otherwise specified.

5.1 Verification of ASV Properties

In this section, we use the ASV model to formally verify two important properties
of the protocol, which were given in [14]. The properties provide guarantees on the
connection confidence and legitimate bandwidth consumption of ASV.

To provide a benchmark for the performance of ASV with respect to these prop-
erties, a simpler protocol, namely the omniscient protocol, in which the server and
clients are always aware of the current ρ and α is also described in the cited paper.
We modeled the omniscient protocol to compare the bounds given by these theo-
rems and provide formal statistical evidence of their correctness. In the omniscient
model, the server accepts client requests with probability that depends only on the
(now known) ρ and α, which implies a simpler server object specification as it no
longer needs to maintain a buffer reqlist nor a client request replication count reqcnt .
Furthermore, a client uses the value dα/ρe as its replication count, and fails if no
ACK is received after Tc units of time.

Connection confidence (Theorems 1 and 2 of [14]). The property gives a
lower bound on the probability with which a given client will be able to establish a
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(a) The ASV protocol (b) The omniscient protocol

Fig. 2. Connection confidence: Theorem bound vs. estimated values

connection to the server, given a condition on the client request rate ρ. In particular,
for the omniscient protocol, Theorem 1 states that if ρmax is at most 1/(−2 log δ),
with δ a given confidence parameter, then any given client will be accepted with
probability at least 1 − δ. A similar lower bound is guaranteed for ASV under a
slightly stronger condition on ρmax, which is that ρmax ≤ 1/(−5 log δ). These prop-
erties are verified by fixing a client i (say the first client 3 ) and then estimating the
expectation of the connConfidence(i, t) formula. Figure 2 plots the estimated prob-
abilities of the first client getting connected versus the bound given by the theorem
at different confidence parameter values, giving rise to different upper bounds on
ρmax, and assuming three different levels of attack (low, medium, and high). For
this analysis, we assume a worst-case analysis with ρ = ρmax. As both Figures 2(a)
and 2(b) show, the estimated success probabilities under both protocols are always
higher than the respective theorem bounds over the whole range of values of ρ,
which confirms the statements of the theorems. We also note that, with respect to
the connection confidence property, both protocols are able to maintain high success
probabilities at higher attack levels compared to those at low attack levels.

Bandwidth usage (Theorem 4 of [14]). This property gives a bound on the
bandwidth consumed by legitimate clients in ASV. In particular, Theorem 4 states
that, under the assumption of bounded variability in ρ, the ratio of the legitimate
bandwidth consumed in ASV to that in the omniscient protocol is bounded above
by log(αmax)/ log( 1

ρmax
). As discussed in [14], the restriction on the variability of ρ is

imposed only to simplify manual analysis and the statement of the theorem. Beside
verifying the theorem, we confirm the conjecture that the upper bound holds even
when the restrictions on ρ are lifted. This is achieved by estimating the expectation
of the formula bw(t), while fixing ρmin to a very low value (close to 0.0) and allowing
ρmax to vary from very small values all the way up to almost 1.0. Figure 3 plots the
estimated ratios at three different attack levels as well as the upper bound given by
the theorem at the lowest level of attack (α = 3.0). The bounds corresponding to
medium and high attack rates are not shown as they are both mostly too high to
appear within the figure’s scale. The important observation here is that the ratios
of the legitimate bandwidth consumed by ASV to that of the omniscient protocol

3 For this analysis, the choice of the client is immaterial since all clients behave identically and are intro-
duced to statistically similar attack conditions.
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Fig. 3. Bandwidth Usage: Theorem bound vs. estimated values

are always below the theorem’s bound. The figure also suggests that these ratios
change only slightly across different attack conditions.

5.2 ASV versus Non-adaptive Selective Verification Schemes

In [14], the results of various NS-2 simulations comparing ASV to two non-adaptive
selective verification variations under various attack conditions were reported. The
non-adaptive schemes are: (i) the Naive protocol, in which a client does not increase
its replication count with time, and (ii) the Aggressive protocol, in which a client
sends the maximum number of requests (2J) at once upon entering the configuration.
The simulations reported validated the different trade-offs associated to the adaptive
versus the non-adaptive schemes in terms of the ratio of successful connections,
the average time-to-service, and the legitimate bandwidth used. We show here
that using the ASV model in Maude along with two variants of it, corresponding
to the non-adaptive protocols above, we obtain similar results through statistical
quantitive analysis with VeStA, independently confirming the simulation analyses.

Since the non-adaptive protocols differ from the ASV protocol only in client
request behavior, the Naive and Aggressive models are very similar to that of ASV.
In fact, their models differ from the ASV model in essentially one rewrite rule,
which is the one labeled [CSend]. In the Naive protocol model specification, the
[CSend] rule maintains the initial replication count, which is equal to 1, causing the
client to send exactly one REQ at every client timeout until connected or failed. On
the other hand, the [CSend] rule of the Aggressive model distinguishes two cases.
During the first attempt at making a request to the server (indicated by the retires
attribute being 0), the rule replicates the request 2J times (the replication count is
simply ignored). Otherwise, if the client has already sent its initial set of requests
(0 < retries ≤ J), the client remains silent.

Since we intended to independently confirm the results of the NS-2 simulations of
[14], we instantiate the model using essentially the same values for the parameters.
That is, we set ρ to 0.08, J to 7, and Limit (the simulation duration) to 30.0 time
units. The expectation of the connection ratios, average TTS values, and legitimate
bandwidth usage are estimated at different attacker rates (given in terms of the
number of attackers). The results are shown in Figure 5.2.

As the figure shows, the results obtained confirm the effectiveness and efficiency
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(a) Connection success ratio (b) Average TTS

(c) Bandwidth usage

Fig. 4. Performance of ASV compared to non-adaptive schemes

of ASV compared to non-adaptive selective verification schemes. In Figure 4(a),
ASV is statistically shown to be effective even under high rates of attack, where it
outperforms both non-adaptive protocols. ASV is able to achieve this high perfor-
mance at the expense of some latency inherent in its adaptive behavior (See Figure
4(b)), which is higher than that of the Naive protocol during periods of medium to
heavy attacks. For legitimate bandwidth consumption, Figure 4(c) shows that at
low to medium attacks, ASV is able to maintain low bandwidth consumption levels
that are comparable to that of the Naive protocol. Even at higher attacks, ASV
manages to outperform the aggressive protocol by a respectable margin.

6 Related Work

The VeStA tool, along with Maude, has been used for statistical model checking in
several projects, including analysis of TCP SYN floods-based DoS attacks within
the shared channel model [2], analysis and redesign of a wireless sensor networks
protocol [13], and a few case studies in object-based stochastic hybrid systems [20].

A similar rewriting-based approach using Maude was also described in [15],
in which the statistical model checking algorithm improves on VeStA’s by pre-
computing the required number of sample runs and using a normal distribution
to approximate expected values. The approach was then applied to a resource
optimization problem in embedded systems.
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Other statistical model checking and quantitative analysis tools have been de-
veloped. They include PRISM [11], a BDD-based model checker with a simple
state-language for system specification, and APMC [9], which is based on a a ran-
domized algorithm for approximating probabilities in Discrete Markov Chains and
supports client-server architectures for parallel computations. Other tools include
Rapture [12] (which is also a BDD-based model checker) and Erlangen-Twente
Markov Chain Checker E ` MC2 [10]. Compared to the VeStA/Maude approach,
most of these tools sacrifice expressiveness and generality for algorithmic decidabil-
ity.

There have been several works in the literature to formally analyze DoS at-
tacks. These include Meadow’s formal framework for evaluating protocols against
DoS attacks [18], an information flow-based framework using the Security Proto-
cols Process Algebra (SPPA) for the detection of DoS vulnerabilities [16], and an
observation-equivalence approach based on π-calculus for DoS detection [1]. Other
formal approaches and extensions and applications of these approaches have also
been developed [24,17,7].

7 Concluding Remarks and Future Work

We have described a rewriting-based approach to the formal specification and ver-
ification of protocol security properties related to availability such as resistance to
DoS attacks. This approach is based on probabilistic rewrite theories, quantitative
probabilistic temporal logic QuaTEx formulas, and statistical model checking, and
is supported by tools such as Maude and VeStA. We have applied this approach to
the formal specification and verification of the ASV DoS-resistant protocol, gaining
a higher level of assurance about availability properties that had been previously
studied for ASV either by hand-carried analytic proofs or by simulation.

This work should be further developed in several ways. On the one hand, follow-
ing the ideas in [5], ASV should be formally specified as a generic protocol wrapper
which provides DoS protection not for a single underlying protocol, but for a wide
range of (originally unprotected) protocols. On the other, formal analysis results
like those presented here should then be obtained for a variety of underlying proto-
cols of interest. A more challenging but very interesting question is that of obtaining
for a generic wrapper version of ASV generic DoS protection guarantees that would
apply not just to a given underlying protocol, but to entire families of protocols.
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Prasanna Thati. Formal modeling and analysis of DoS using probabilistic rewrite theories. In
International Workshop on Foundations of Computer Security (FCS’05), 2005.

14



AlTurki, Meseguer and Gunter
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[9] Thomas Hérault, Richard Lassaigne, Frédéric Magniette, and Sylvain Peyronnet. Approximate
probabilistic model checking. Verification, Model Checking, and Abstract Interp., pages 307–329, 2004.

[10] Holger Hermanns, Joost-Pieter Katoen, Joachim Meyer-Kayser, and Markus Siegle. A markov chain
model checker. In TACAS’00: The 6th International Conference on Tools and Algorithms for
Construction and Analysis of Systems, pages 347–362, London, UK, 2000. Springer-Verlag.

[11] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for automatic verification of
probabilistic systems. In H. Hermanns and J. Palsberg, editors, Proc. 12th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’06), volume 3920 of
LNCS, pages 441–444. Springer, 2006.

[12] Bertrand Jeannet, Pedro R. D’Argenio, and Kim G. Larsen. RAPTURE: A tool for verifying markov
decision processes. In Tools Day, International Conference on Concurrency Theory, CONCUR’02,
Czech Republic, August 2002. Technical Report, Faculty of Informatics at Masaryk University Brno.

[13] Michael Katelman, Jose Meseguer, and Jennifer Hou. Redesign of the LMST wireless sensor protocol
through formal modeling and statistical model checking. In International Conference on Formal
Methods for Open Object-based Distributed Systems (FMOODS), 2008. To appear.

[14] Sanjeev Khanna, Santosh S. Venkatesh, Omid Fatemieh, Fariba Khan, and Carl A. Gunter. Adaptive
selective verification. In IEEE Conference on Computer Communications (INFOCOM ’08), Phoenix,
AZ, April 2008. IEEE.

[15] Minyoung Kim, Mark-Oliver Stehr, Carolyn L. Talcott, Nikil D. Dutt, and Nalini Venkatasubramanian.
A probabilistic formal analysis approach to cross layer optimization in distributed embedded systems.
In Formal Methods for Open Object-Based Distributed Systems (FMOODS ’07), volume 4468 of LNCS.
Springer, 2007.
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