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Abstract

Modern information systems are built through the in-
tegration of different, autonomous components that may
themselves be complex systems. This Systems-of-Systems
(SoS) architecture is foreseen to underlie future informa-
tion systems primarily because it promotes modularity, fa-
cilitating reuse and maintenance. Nevertheless, engineer-
ing verifiably dependable SoS is particularly difficult due
to their complexity. In this paper, we present a semantics-
based approach for the formal modeling and analysis of
SoS using the COMPASS Modeling Language or CML
(compass-research.eu). We present an executable
rewriting specification of CML in rewriting logic that cap-
tures its operational semantics. The semantics is based on
a variant of CML’s structural operational semantics and,
therefore, its correctness is straightforward. We then gen-
eralize the semantics into a symbolic rewriting semantics
with which open systems can be symbolically executed and
analyzed through the integration of rewriting with solving
satisfiability problems modulo arithmetic theories. We il-
lustrate the approach through an example using a version
of the Maude tool that integrates with the CVC3 solver.

1. Introduction

Modern information systems are built through the in-
tegration of different, autonomous components that may
themselves be complex systems. Through this integration,
the components operate cooperatively to provide a larger,
more useful whole. This Systems-of-Systems (SoS) archi-
tecture is foreseen to underlie future information systems
primarily because it promotes modularity, facilitating reuse
and maintenance. Consequently, dependability of these sys-
tems, especially in mission- and business-critical applica-
tions, is increasingly becoming a major concern. Neverthe-
less, engineering verifiably dependable SoS is a particularly
difficult task due to their complexity and the heterogeneity
of their constituent parts.

Formal modeling and analysis of SoS requires inte-
grating different facilities and methods to manage their
complexity and properly address their dependability prop-
erties. In an ambitious effort to develop an integrated
framework for this purpose, the COMPASS (Comprehen-
sive Modeling for Advanced Systems of Systems) con-
sortium (compass-research.eu) developed a unified,
broadly accessible, formal modeling language, the COM-
PASS Modeling Language or CML [6, 17]. The language
serves as an intermediate language between higher-level
modeling languages and lower-level implementation plat-
forms. It integrates three existing frameworks: (1) The Vi-
enna Development Method (VDM) [2], a well-established
formal method for the specification and verification of sys-
tems; (2) Communicating Sequential Processes (CSP) [7], a
calculus for modeling message-passing concurrent systems;
and (3) Circus [16], a language for refinements. Further-
more, suitability of CML for modeling large-scale SoS has
been demonstrated through several case studies.

We aim in this work to develop automated formal rea-
soning tools for SoS based on CML. Developing such tools
amounts to developing an executable formal specification
of CML that captures precisely its operational semantics.
For this purpose, we use rewriting logic [8], an expressive
computational logic in which systems can be naturally spec-
ified. The suitability and usefulness of rewriting logic as a
semantic framework has now been well established through
a long series of developments within the rewriting logic se-
mantics project (see [10, 12] for recent surveys). It is also
well supported by tools in its implementation in Maude [3].

In this paper, we present an executable operational se-
mantics of CML in rewriting logic that is based on a variant
of the structural operational semantics of CML given in [5].
The rewriting semantics is obtained through the semantics-
preserving transformation of [11] and, thus, its correctness
is a straightforward corollary of the correctness of the trans-
formation. We then generalize the semantics into a sym-
bolic rewriting semantics with which open systems can be
symbolically executed and analyzed. This is enabled by the
integration of term rewriting and satisfiability modulo theo-
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ries (SMT), through which the technique of rewriting mod-
ulo SMT emerged [14]. In this technique, a symbolic state
is a pair (t;ϕ), with t a symbolic term and ϕ a symbolic
constraint solvable by an SMT solver. The pair (t;ϕ) rep-
resents a possibly infinite set of states that are instances of t
satisfying ϕ. As rewriting modulo SMT reduces to standard
rewriting [14], the symbolic specification of CML is exe-
cutable in versions of Maude that integrate with an external
SMT solver (CVC3). We illustrate this approach through a
simple working example .

The rest of the paper is organized as follows. Section 2
overviews the syntax and operational semantics of CML. A
rewrite theory giving concrete semantics of CML in rewrit-
ing logic is presented in Section 3. This is followed in Sec-
tion 4 with a generalization of that theory into a symbolic
semantics of CML and an example showing how the seman-
tics may be used. Section 5 overviews related work. The
paper concludes with a discussion of future work.

2. The COMPASS Modeling Language

The COMPASS Modeling Language or CML [6, 17] is
an intermediate language for modeling and analyzing SoS.
It integrates three existing frameworks: VDM [2], CSP [7]
and Circus [16]. An integrated tool built around CML has
also been developed [4]. Being based on three different
languages, CML is quite expansive, including many con-
structs and features from all three languages. CML has
rich state, rich operations, concurrency, communication,
real-time, object-orientation, and process-algebraic combi-
nators. Although being expansive helps target a wider user-
base, it presents a challenge for formal reasoning and anal-
ysis. However, considering all features of CML for formal
verification is not necessary. We can identify a kernel of
CML with which we can define all other features in the
language as derived constructs, and apply formal reason-
ing techniques on this kernel. This was already done for
CML in [15], when developing CML’s formal semantics in
UTP. Here, we identify a slightly different kernel, denoted
CMLk, and describe it next.

2.1. Syntax of CMLk

Figure 1 shows the abstract syntax of CMLk. We assume
a syntactic category of names (Name), which may repre-
sent program variables (abstractions of values) or channel
names. We also assume a syntactic category of expres-
sions, which are terms that denote values of possibly dif-
ferent types (e.g. integers, booleans, reals, ...).

The basic unit of a CMLk specification is a process.
Primitive processes can be: (1) skip, representing normal
termination, (2) the divergent process, dive, that never ter-
minates, or (3) the assignment process, x := e, assigning

x, c ∈ Name e ∈ Expression

a ∈ Action ::= c ?x : e Input
| c ! e Output

P ∈ Process ::= skip Termination
| dive Divergence
| x := e Assignment
| [e, e] Design
| a→ P Prefixed process
| P / e . P Conditional
| P \ c Hiding
| P ;P Sequencial composition
| P u P Internal choice
| P � P External choice
| P J~c KP Parallel composition
| µx.P (x) Recursion

Figure 1. Abstract Syntax of CMLk

the value of the expression e to the variable x. A pro-
cess may also be specified abstractly as a design (specifi-
cation) [p, q], where p is the pre-condition and q is the post-
condition, representing all processes that when executed at
a state satisfying p will terminate in a state that satisfies q.

Furthermore, as in CSP, larger processes may be formed
using one or more of the following combinators. The pre-
fixed process, a → P , performs the (observable) action a
and then behaves as P . An action can be either an input
action c?x : e, where e is an expression that evaluates to a
set of values that may be input through the channel c and
assigned to x, or an output action c ! e, where the value of
e is output through c. A process may also be the sequential
composition of two processes P1;P2, which executes P1 to
completion, and then behaves as P2. The internal choice of
two processes P1 u P2 non-deterministically selects to ex-
ecute either P1 or P2. The external choice P1 � P2, on the
other hand, leaves this selection to the environment, so that
both processes are executed, but once a process makes an
observable transition (or finishes execution), the other pro-
cess is aborted. A process may also be the synchronized
parallel composition of two processes P1J~c KP2, in which
P1 and P2 are executed concurrently while synchronizing
on actions performed through the channels ~c. The abstrac-
tion P \c hides actions through c in P so that they are exter-
nally unobservable. Finally, µx.P (x) is the recursive pro-
cess for defining potentially infinite behavior.

We now give a simple example to illustrate the seman-
tics. This is a working example that will be used through-
out the rest of the paper to illustrate the different formal
semantics presented (It is intentionally kept simple given
the space limitations). Consider the sequential (but non-
deterministic) reactive process defined as:

c ?x : {7+3, 3∗10, 9} → (x := x+1; c !x→ skip) (?)

The process first receives a value from the set of possible
values from the environment through channel c and binds



it to x. It then increments the value of x and outputs the
new value through the same channel, before it concludes
execution. Despite being sequential, the process is non-
deterministic, as it models an open system that receives in-
put from the environment.

2.2. Operational Semantics

Automated formal analysis of SoS in CML amounts to
devising an executable operational semantics of CMLk. For
this purpose, we adopt the Structural Operational Semantics
(SOS) developed in the COMPASS Project for (a kernel of)
CML [5]. The semantics formally specifies program be-
havior as a state transition system by defining a transition
relation on program states. The transition relation specifies
the computation steps exhibited by the different constructs
in the language. Furthermore, the operational semantics is
symbolic, using symbolic integers (called loose constants
in [5]) enabling the succinct representation of a set of re-
lated transitions as a single abstract transition.

In our SOS of CMLk, which is directly based on the SOS
given in [5], a state is represented by a configuration of the
form 〈c | s |= P 〉, where c is a symbolic constraint, s is
an environment mapping variables to values (or symbolic
integers) and P is a CMLk process. A labeled transition

relation
l

↪−→ on configurations defines an interleaving se-
mantics of CMLk processes. The label l denotes the type
of action taken when the corresponding transition occurs.
Assuming d is a channel name and w is a symbolic inte-
ger, there are four possible types of actions: the input action
d?w, the output action d !w, the input/output (synchroniza-
tion) action d.w and the internal (unobservable) action τ .
The labeled transition relation is defined inductively over
the structure of a CMLk process as the smallest relation that
can be generated by a specific set of SOS rules, a sample of
which is listed in Figure 2. The full list of SOS rules can be
found online at www.ccse.kfupm.edu.sa/˜musab/
cml-fmi. Some representative rules will be described in
Section 3 in the context of their rewriting specifications.

To illustrate how the SOS rules capture the symbolic se-
mantics of CMLk, we present below the execution trace of
our example process ? introduced in Section 2.1:

〈> | ∅ |= ?〉
c ?w0
↪−→ 〈w0 ∈ {10, 30, 9} | [x← w0] |=

blockx (x := x+ 1; c !x→ skip)〉
τ
↪−→ 〈w0 ∈ {10, 30, 9} ∧ w1 = w0 + 1 | [x← w1] |=

blockx (c !x→ skip)〉
c !w2
↪−→ 〈w0 ∈ {10, 30, 9} ∧ w1 = w0 + 1 ∧ w2 = w1 | [x← w1] |=

blockx skip〉
τ
↪−→ 〈w0 ∈ {10, 30, 9} ∧ w1 = w0 + 1 ∧ w2 = w1 | ∅ |= skip〉

The first transition, which is a consequence of applying the
input rule (invoked by the prefixed process rule), involves

c

〈c | s |= x := e〉
τ
↪−→ 〈c ∧ (w0 = e ⇓s) | s[x/w0] |= skip〉

ASSIGN

c T = e ⇓s T 6= φ

〈c | s |= d?x : e→ P 〉
d?w0
↪−→ 〈c ∧ w0 ∈ T | s[x← w0] |= blockx P 〉

INPUT

c

〈c | s |= d ! e→ P 〉
d !w0
↪−→ 〈c ∧ (w0 = e ⇓s) | s |= P 〉

OUTPUT

〈c1 | s1 |= P1〉
l

↪−→ 〈c2 | s2 |= P2〉

〈c1 | s1 |= P1;Q〉
l

↪−→ 〈c2 | s2 |= P2;Q〉
SEQ-PROGRESS

c

〈c | s |= skip;Q〉
τ
↪−→ 〈c | s |= Q〉

SEQ-END

Figure 2. Sample SOS Rules of CMLk (see [5])

generating a fresh symbolic constant, mapping it to x and
adding the constraint that it can only be one of the values
given by the set {10, 30, 9}. The internal construct blockx

is used in the program text to keep track of the scope of
x. The second transition generates w1 (for the value of the
expression x + 1) and appropriately updates both the map-
ping to x in the environment and the symbolic constraint.
This is followed by generating an output event in the third
transition. Finally, the last transition drops the scope of x.
We note that each step of execution of the process ? (except
the last) involves generating a fresh symbolic constant and
accumulating constraints on these constants. We also note
that all these steps are feasible, having constraints that can
be easily checked satisfiable using an SMT solver.

3. Rewriting Semantics of CMLk

We aim to develop a formal semantics of CMLk that is
both provably correct and executable, so that the semantics
may be used to prototype, simulate and formally analyze its
programs. For this, we describe in this section a rewriting
semantics obtained by transforming the SOS of CMLk out-
lined in Section 2.2 into a rewriting logic specification using
the correctness-preserving transformation given in [11].

3.1. Preliminaries

The unit of specification in rewriting logic is a rewrite
theory R, which is a triple R = (Σ, E ∪ A,R) consist-
ing of the following components: (1) Σ, a signature declar-
ing kinds, sorts and operators; (2) E, a set of Σ-sentences,
which are universally quantified equations (t = t′) or mem-
berships (t : s), (3) A, a set of equational axioms, such as
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commutativity, associativity and identity; and (4) R, a set
of universally quantified labeled rewrite rules of the form:
(∀X) r : t→ t′ if C where r is a label and C is (possibly)
a conjunction of equational and rewrite conditions. The the-
ory (Σ, E∪A) is a membership equational logic [9] theory,
which gives a formal description of the static state structure.
The rules R, on the other hand, specify the dynamic behav-
ior (transitions) of the system. A rewrite theory R proves
a statement of the form (∀X) t → t′, meaning that, in R,
any instance of the state term t can reach the corresponding
instance of the state term t′ in a finite number of, possibly
concurrent, steps. A detailed discussion of rewriting logic
as a unified model of concurrency and its inference system
can be found in [8] (see also the survey [10]).

A high-performance and feature-full implementation of
rewriting logic is provided by Maude [3]. Theories, speci-
fied as modules, can be executed (under certain reasonable
executability assumptions) and analyzed using its arsenal
of formal verification tools. Furthermore, recent versions of
Maude integrates with the CVC SMT solver [1] providing
an implementation for rewriting modulo SMT [14], which
we exploit in this work.

3.2. A Rewrite Theory of CMLk

In this section, we describe an initial rewrite theory
Rc = (Σc, Ec ∪ Ac, Rc) that captures the concrete seman-
tics of CMLk without symbolic constants. The extension
to the symbolic semantics is deferred to Section 4. The
full specification has been developed in Maude and is avail-
able online at www.ccse.kfupm.edu.sa/˜musab/
cml-fmi with instructions on how it may be used. In the
description below, we only highlight representative parts of
the theory and refer the reader to the specification available
online for other details.

Expressions. The signature Σc declares sorts for integer
and Boolean values and expressions with the expected sub-
sorting hierarchy. In particular, for integers, the sorts IntCns
and IntName represent, respectively, integer values and in-
teger names (or variables). The integer expressions sort Int
includes values and names as subsorts, in addition to larger
expressions that are constructed using standard arithmetic
operators, such as negation, addition, and so on. An exam-
ple operator declaration is shown below:

+ : Int× Int→ Int [assoc comm prec 35]

The operator is declared in mixfix notation, where the un-
derscores specify locations of arguments. Operators may
also have equational attributes (constituting Ac in the the-
oryRc), such as assoc for associativity and comm for com-
mutativity for integer addition. To minimize use of paren-
thesis, a precedence value may also be specified using prec:

the lower the value, the higher the precedence. A similar
set of sort, subsort and operator declarations are provided
for Boolean expressions, represented by the sort Bool. The
sort Expr, a supersort of both Int and Bool, models all valid
expressions in CMLk.

Auxiliary functions on expressions are defined induc-
tively over the structure of an expression using equations
(in Ec). Rc defines a collection of these functions to facili-
tate the specification of the semantics of CMLk.

Environment. To evaluate integer expressions, which
may contain names of the sort IntName, an environment
providing a mapping of names to values is needed. In
Rc, the environment (of the sort Env) is conveniently con-
structed as the associative empty juxtaposition of mappings
of the form [x 7→ v], mapping the name x to the value v.
There are two constructors for the list of mappings:

: Env × Env→ Env [assoc id : mt] mt :→ Env

The empty juxtaposition operator is declared associative
with identity element mt, the constructor of the empty envi-
ronment. We assume through this representation a model of
the environment that is aligned as a stack whose top element
is the rightmost element. Not only does this allow for a con-
venient and succinct definition of operations on the environ-
ment (as we will see shortly), it also provides a mechanism
for managing name scopes, with the rightmost mapping of a
name representing the innermost scope in which this name
is declared.

Environment lookup and update operations are declared
and equationally defined. The lookup function σ[x] returns
the value given by the rightmost (most recent) mapping for
x in σ, while the update function σ[x/v] returns an environ-
ment that is almost the same as σ, but with the most recent
mapping for x updated to have the value v. The equations
defining these and other operators on the environment ex-
ploit matching modulo associativity and identity algorithms
(implemented in Maude). For example, the definition of the
lookup operation is shown below:

(σ[x 7→ v])[x] = v

(σ[y 7→ v])[x] = σ[x] if y 6= x

The first equation applies if the name being looked up
matches the rightmost mapping of the current environment,
in which case the value given by this mapping is used. The
second equation applies when the name does not match, and
in this case, the name is recursively looked up in the rest
of the environment. Other operations on environments are
similarly defined.

Now that we have an environment, we may now define
the semantics of integer and Boolean expressions through
the (overloaded) evaluation operator:
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⇓ : Int× Env→ IntCns

⇓ : Bool× Env→ BoolCns

Evaluation is deterministic and is, thus, defined using equa-
tions by induction over the structure of expressions. Its def-
inition uses the operations on environments as appropriate.

Processes. To model processes, the signature Σc declares
a sort Process whose elements are constructed by operators
matching the syntax of CMLk given in Figure 1. We show
below the prefixed process operator as an example:

→ : Action× Process→ Process

where the sort Action defines input and output actions of
the forms d?x : e and d ! e, respectively.

Labels. The transition relation defined by the SOS of
CML is labeled, where a label scheme represents the type
of action taken by a process when making a transition. In
Rc, we declare a sort hierarchy for labels:

SLabel NSLabel < Label < MaybeLabel

with SLabel the sort for the silent τ transition and NSLabel
the sort for non-silent (input/output/synchronization) labels.
The MaybeLabel is a supersort that includes the possibility
of having a ”no label” ε. The following operators construct
labels of the above sorts:

τ :→ SLabel ε :→ MaybeLabel

〈 〉 : IntName×Mode× Expr→ NSLabel

with Mode being either the input indicator (?), the output
indicator (!) or the synchronized input/output indicator (.).

Configurations. A state in the execution of a CMLk pro-
cess is modeled by a configuration, which is a pair of the
form 〈R |= P 〉, with P the process to be executed and R
a record structure consisting of indexed semantic fields that
are needed for properly capturing the semantics of a CMLk

process. In the concrete semantics Rc of CMLk described
here, the record R consists only of two fields: (1) the en-
vironment field, which maintains the current environment
σ mapping names to values, and (2) the label field, which
maintains the label λ of the last transition that led to the
current state. Therefore, a configuration of a CMLk process
has the following form: 〈e : σ | l : λ |= P 〉.

Rewrite rules. Now that we have the semantic infras-
tructure defined, we may specify the semantics of pro-
cesses in CMLk using rewrite rules Rc in the theory Rc.

ASSIGN : 〈e : σ | l : λ | R |= x := e〉
⇒ 〈e : (σ[x/v]) | l : τ | R |= skip〉 if v := e ⇓ σ

INPUT : 〈e : σ | l : λ | R |= c?x : e→ P 〉
⇒ 〈e : (σ[x← v]) | l : 〈c?v〉 | R |= blockx P 〉 if v ∈ e ⇓ σ

OUTPUT : 〈e : σ | l : λ | R |= c ! e→ P 〉
⇒ 〈e : σ | l : 〈c ! v〉 | R |= P 〉 if v := e ⇓ σ

SEQ-PROGRESS : 〈R1 |= P1;P 〉 ⇒ 〈R2 |= P2;P 〉
if 〈R1 |= P1〉 ⇒ 〈R2 |= P2〉

SEQ-END : 〈R | l : λ |= skip;P 〉 ⇒ 〈R | l : τ |= P 〉

Figure 3. Sample rewrite rules in Rc

This is achieved systematically by applying the semantics-
preserving transformation from (Modular) SOS to rewriting
logic given in [11]. The transformation maps the SOS rules
into corresponding topmost conditional rewrite rules oper-
ating on CMLk configurations that are very similar in struc-
ture to their SOS counterparts. Furthermore, for every SOS
rule in the semantics of CMLk, there is exactly one corre-
sponding rewrite rule in Rc. Figure 3 lists the rewrite rules
that correspond to the rules in Figure 2.

To illustrate how the rules operate, we use the example
process ? presented in Section 2.1. An execution of ? inRc

starting from its initial configuration 〈e : ∅ | l : λ |= ?〉 is
shown below:

〈e : ∅ | l : λ |= ?〉
⇒ 〈e : [x← 10] | l : 〈c ? 10〉 |= blockx (x := x+ 1; c !x→ skip)〉
⇒ 〈e : [x← 11] | l : τ |= blockx (c !x→ skip)〉
⇒ 〈e : [x← 11] | l : 〈c ! 11〉 |= blockx skip〉
⇒ 〈e : ∅ | l : τ |= skip〉

It is worth noting that this is one possible execution (in
which the environment gives the value 10 to the process).
There are potentially two other possible executions.

4. Symbolic Semantics of CMLk

The concrete semantics given by Rc captures most of
CMLk features and, through its implementation in Maude,
can be very useful for prototyping SoS specifications and
analyzing their properties. However, the semantics is too
detailed allowing only explicit states with each possible be-
havior modeled by an independent execution path. This
can render formal analysis of specifications very inefficient
and sometimes unnecessarily detailed. Furthermore, being
concrete, the semantics allows only trivial designs [p, q] in
which ground instances of p and q (in which all references
to names have been resolved) are (equationally) equivalent
to a Boolean value (either true or false).

By integrating term rewriting with satisfiability modulo
theories (SMT), the technique of rewriting modulo SMT



emerged [14]. In this technique, a symbolic state is a pair
(t;ϕ), with t a symbolic term and ϕ a symbolic constraint
solvable by an SMT solver. The pair (t;ϕ) represents a pos-
sibly infinite set of states that are instances of t satisfying
ϕ. Rewriting modulo SMT symbolically rewrites the pair
(t;ϕ) to another using rewrite rules of the form:

t(~x)→ t′(~x, ~y) if ϕ(~x, ~y)

where ~y are new variables (appearing on the right-hand side
of the rule) that capture non-deterministic changes in the
symbolic state (e.g. environment input).

We generalize the theoryRc specifying concrete seman-
tics of CMLk to a new theoryRs = (Σs, Es ∪As, Rs) that
captures its symbolic semantics. Like Rc, the symbolic se-
mantics is obtained through the standard transformation of
SOS into rewriting logic [11], through which correctness of
the semantics can be easily established. Furthermore, the
specification of the theory Rs in Maude, integrated with
CVC3, enables symbolic verification of CMLk programs.

4.1. Changes in the Semantic Infrastructure

Symbolic constants. The signature Σs introduces the sort
IntVar for symbolic integer constants, a subsort of the sort
of integer expressions Int. Symbolic constants are con-
structed using the operator i : Nat → IntVar, providing a
countably infinite supply of them as desired. We note that,
with this extension, expressions may now include both in-
teger names (or variables) and symbolic integer constants,
in addition to other operators, e.g. x + 1 > w, with x a
name and w a symbolic constant. Therefore, constraints,
which are Boolean expressions such as x+ 1 > w, can now
be symbolic and their satisfiability will need to be checked
through a satisfiability checker modulo the theory of arith-
metic. As a consequence, this enables the specification
of designs that are much more interesting and useful than
the ones available through the concrete semantics. Further-
more, the environment is now extended so that mappings
of names to symbolic constants are also possible. Finally,
labels are also modified so that non-silent labels include a
symbolic constant component instead of an integer value.

Configurations. A state in the symbolic execution of a
CMLk program must now maintain the constraints accu-
mulated so far on symbolic constants. This is achieved by
adding a new field in the record of a configuration in the
symbolic semanticsRs of the form c : ϕ, with ϕ a Boolean
expression that may contain names and symbolic constants.
For efficiency and convenience, we add two more fields that
help in managing the semantics of symbolic constants. The
first field is the satisfiability flag field s : b (with b a Boolean
value), which indicates whether the currently accumulated

constraint is satisfiable or not. The second field w : n main-
tains a counter n for the generation of fresh symbolic con-
stants whenever needed by the configuration. Consequently,
a configuration inRs has the following form:

〈s : b | e : σ | l : λ | c : ϕ | w : n |= P 〉

4.2. Rewrite Rules in Rs

Most of the rewrite rules in Rs giving symbolic seman-
tics to CMLk are very similar to those in Rc. This is pri-
marily due to the modular structure of the rules promoted
by rewriting logic and the transformation of [11], in which
rules mention only the fields they need and allow, through
matching modulo associativity and commutativity, unspec-
ified additional fields in a configuration. There are a few
exceptions, however, since a few rules, namely those for as-
signments, input and output, designs and conditionals, re-
quire fundamental changes. We highlight next the main
changes needed in the ASSIGN and INPUT rules below as
representative examples. Changes in other rules are similar.

The symbolic assignment rule ASSIGN is as follows:

ASSIGN : 〈s : > | e : σ | l : λ | c : ϕ | w : n | R |= x := e〉
⇒ 〈s : sat?(ϕ′) | e : σ[x/in] | l : τ | c : ϕ′ | w : s(n) | R |= skip〉

if ϕ′ := (ϕ ∧ (in = e ⇓σ))

Compared with the assignment rule in the concrete seman-
tics shown in Figure 3, we first note that the rule is condi-
tional with a matching equation in its condition (A match-
ing equation p := t evaluates the right-hand side term t to
its canonical form and then matches it with the pattern p on
the left-hand side, instantiating its variables as needed). The
rule applies only when the satisfiability flag is set, meaning
that the configuration represents a reachable state that can
be progressed further. When it fires, the rule creates a fresh
symbolic constant in and conjoins the constraint ϕ with the
requirement that in is equal to the expressionE evaluated in
the current state σ. The simplified form of this augmented
constraint instantiates the variable ϕ′, which is used in the
rule to update the constraint of the configuration. The satis-
fiability flag is also updated using the operator sat?, which
invokes the SMT solver, as described in Section 4.3 below.
Finally, the constant to which x is mapped in Σ is updated
to the new symbolic constant in. It is worth noting here
that, unlike the concrete semantics, the evaluation of the ex-
pression e ⇓ σ may not necessarily result in a value, as the
expression may contain symbolic constants.

The symbolic input rewrite rule INPUT is as follows:

INPUT : 〈s : > | e : σ | l : λ | c : ϕ | w : n | R |= c?x : e→ P 〉
⇒ 〈s : sat?(ϕ′) | e : σ[x← in] | l : 〈c ? in〉 | c : ϕ′ | w : s(n) |

R |= blockx P 〉
if ϕ′ := (ϕ ∧ (in ∈ e ⇓ σ))



The expression e is a set of subexpressions represent-
ing potential inputs from the environment. The (non-
deterministic) choice of input is captured by a fresh sym-
bolic constant in. Moreover, a mapping for x to in is added
to the environment, and the constraint that in belongs to the
set e is added to the constraint ϕ. We note that the label
captures the input event of the symbolic constant in on the
channel c.

As an example, we show below the rewriting steps in-
volved in the execution of our working example process ?:

〈s : > | w : 0 | e : ∅ | l : λ | c : > |= ?〉
⇒ 〈s : > | w : 1 | e : [x← i0] | l : 〈c ? i0〉 |

c : i0 ∈ {10, 30, 9} |= blockx (x := x+ 1; c !x→ skip)〉
⇒ 〈s : > | w : 2 | e : [x← i1] | l : τ |

c : i0 ∈ {10, 30, 9} ∧ i1 = s(i0) |= blockx (c !x→ skip)〉
⇒ 〈s : > | w : 3 | e : [x← i1] | l : 〈c ! i2〉 |

c : i0 ∈ {10, 30, 9} ∧ i1 = s(i0) ∧ i2 = i1 |= blockx skip〉
⇒ 〈s : > | w : 3 | e : ∅ | l : τ |

c : i0 ∈ {10, 30, 9} ∧ i1 = s(i0) ∧ i2 = i1 |= skip〉

This sequence of rewrites captures precisely the sym-
bolic semantics of ?, and is identical to that given by the
SOS semantics (shown in Section 2.2). Note that this se-
quence is a generalization of the sequence of rewrites gen-
erated by the concrete rewriting semantics Rc (shown in
Section 3.2), as desired. It captures all possible concrete
executions through symbolic constants and constraints. We
also note that feasibility of every step of the sequence is
indicated by the satisfiability flag.

4.3. Integration with the SMT Solver

In the symbolic semanticsRs, each rewrite step that up-
dates the constraint field in a configuration, such as the steps
induced by the ASSIGN and INPUT rules, requires invoking
an SMT solver to check satisfiability of the constraint. The
implementation of the semantics in Maude integrated with
CVC3 facilitates execution of its induced rewrite relation,
enabling dynamic formal analysis of CMLk programs.

The interface to the SMT solver is algebraically speci-
fied using the operator check-sat, which is declared as
a special operator that can invoke the external solver (it is
hooked in Maude to the procedure responsible for invoking
the solver). The operator takes as input the constraint for-
matted as a valid string of input to be supplied to the solver,
and returns its output string. The input string that corre-
sponds to a given symbolic Boolean expression is generated
using an operator translate : Bool → String, which is de-
fined inductively over the structure of a Boolean expression.
The sat? operator, which we saw in Section 4.1 above, is a
wrapper function for check-sat that translates the input
expression (using translate) into a valid CVC3 string and
passes it to check-sat. sat? then examines the output of
the solver and returns either true or false accordingly.

Through this interface, the specification inRs is fully ex-
ecutable in Maude. Dynamic formal verification of CMLk

can now be achieved by leveraging the full arsenal of
generic formal analysis tools available in Maude, includ-
ing searching and model checking. As an example, search-
ing for the terminal state(s) of the process ? (given in Sec-
tion 2.1) gives the following result:

search in CML : {c ? x : {3 + 7, 9, 3 * 10} ->
(x := 1 + x ; c ! x -> skip)} =>! C:Config .

Solution 1 (state 5)
C:Config -->
< s : true | w : 3 | e : mt | l : tau |
c : (9 = i(0) v 10 = i(0) v 30 = i(0)) ˆ

i(1) = i(2) ˆ i(1) = 1 + i(0) |= skip >)
No more solutions.
states: 6 rewrites: 269 in 8ms cpu (16ms real)

with conjunction and disjunction denoted by ˆ and v re-
spectively in the constraint field. The value true in the
satisfiability field is the result of checking this constraint
using the external SMT solver. To see details about the ex-
ecution path that led to this state, we may use the following
command (only partial output is shown):

Maude> show path 5 .
state 0, Config: ... ===[ input ]===>
state 1, Config: ... ===[ block-progress ]===>
state 2, Config: ... ===[ block-progress ]===>
state 3, Config: ... ===[ block-progress ]===>
state 4, Config: ... ===[ block-end ]===>
state 5, Config: ...

The output shows the execution steps and the labels of
rules used in each. We note here the assignment and output
operations in ? occur inside a block, and hence the applica-
tions of the block-progress rules.

5. Related Work

CML has been well documented in the deliver-
ables of the COMPASS project, which are publicly
available online at the COMPASS Consortium website
compass-research.eu. In addition to the timed, de-
notational semantics in UTP [15], a particularly relevant re-
port is Deliverable D23.4c [5], which documents in detail a
timed, symbolic, structural operational semantics of CML,
which is the basis for the rewriting semantics described in
this work. Furthermore, this structural operational seman-
tics was later used to develop a symbolic model checking
tool for CML specifications through an embedding of the
semantics in Microsoft’s FOrmal Modeling Using Logic
programming and Analysis (FORMULA) framework [13].
The embedding uses FORMULA’s abstract data type spec-
ification and constraint logic programming facilities to de-
fine the labeled transition system given by the SOS rules
of CML. Moreover, symbolic constraint solving in FOR-
MULA is enabled through the integration with the Z3 SMT

compass-research.eu


solver. The symbolic rewriting semantics described in this
work provides a natural platform for developing a symbolic
model checker for CML without the need to do any kind
of embedding as the rewriting specification is directly ex-
ecutable and rewrite theories have natural Kripke structure
representations based on which model checking can directly
be performed.

Several recent developments within the rewriting logic
semantics project that are closely related to this work ap-
peared in the literature. Representative examples include
the symbolic rewriting specifications of the CASH real-
time scheduling algorithm and NASA’s Plan Execution In-
terchange Language (PLEXIL) [14]. Through their imple-
mentations in Maude and the integration with the the exter-
nal SMT solver CVC3, the specifications were used to build
symbolic model checking tools capable of verifying tempo-
ral logic properties against generic initial configurations.

6. Concluding Remarks

We presented a semantics-based approach for the for-
mal modeling and analysis of specifications in the COM-
PASS Modeling Language (CML). The approach is based
on developing an executable formal semantics of CML in
rewriting logic, that is based directly on CML’s structural
operational semantics. The semantics is also symbolic, en-
abling symbolic reasoning of CML specifications. Using
the Maude tool, and its integration with the CVC3 SMT
solver, the analysis is mechanized. A simple working ex-
ample was used to illustrate the semantics presented.

There are several directions for further developments
and research, including (1) extending the semantics to a
timed semantics, capturing timed behaviors of CML pro-
cesses, and (2) developing a symbolic model checking tool
based on the timed rewriting semantics of CML and using
Maude’s model checking facilities, among others.
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