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Abstract
Orc is a language proposed by Jayadev Misra [19] for orchestration
of distributed services. Orc is very simple and elegant, based on
a few basic constructs, and allows succinct and understandable
programming of sophisticated applications. However, because of
its real-time nature and the different priorities given to internal
and external events in an Orc program, giving a formal operational
semantics that captures the real-time behavior of Orc programs is
nontrivial and poses some interesting challenges. In this paper we
propose such a real-time operational Orc semantics, that captures
the informal operational semantics given in [19]. This operational
semantics is given as a rewrite theory in which the elapse of time
is explicitly modeled. The priorities between internal and external
events are also modeled in two alternative ways: (i) by a rewrite
strategy; and (ii) by adding extra conditions to the semantic rules.
Since rewriting logic has efficient implementations such as Maude,
we also get, directly out of the semantic definitions, both an Orc
interpreter and an LTL model checker for Orc programs.

Categories and Subject Descriptors F.3.2 [Logics and Meanings
of Programs]: Semantics of Programming Languages—Operational
semantics; Program analysis

General Terms Languages, Theory, Verification

Keywords Orc, rewriting logic, structural operational semantics,
real-time, orchestration theory, formal analysis, Maude

1. Introduction
Orc is a language proposed by Jayadev Misra [19] for orchestra-
tion of distributed services. The language is very simple and ele-
gant, based on a few basic constructs, and allows succinct and un-
derstandable programming of sophisticated applications, including
web services and their coordination. However, although the lan-
guage is conceptually simple, giving it a precise formal semantics
accounting for all its aspects is nontrivial and poses some interest-
ing challenges, which we address in this paper.

Several Orc semantics have already been given. Hoare, Men-
zel and Misra [12] developed a tree-based denotational seman-
tics of Orc that is well-suited for reasoning about identities in the
language, rather than for describing the operational behavior of
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Orc programs. Another formal semantic model intended mainly
to prove algebraic laws about Orc expressions appeared in [13],
where the authors proposed a trace-based characterization of Orc
expressions. We are particularly interested in Orc’s operational se-
mantics. A precise but informal operational semantics for Orc was
given by Misra in [19]; we consider this as the standard against
which the success of any formal operational semantics should be
measured. A formal SOS asynchronous operational semantics has
been given by Misra and Cook in [20]; but since this asynchronous
semantics allows some undesirable behaviors, a refinement of the
asynchronous semantics into a synchronous semantics, distinguish-
ing between internal and external actions was also given in [20].

We take the asynchronous and synchronous formal operational
semantics of Orc given in [20] as our basis. However, in our view
the intended informal operational semantics in [19] is not yet fully
captured. The key point is that Orc is a real-time programming
language, in which time elapse is of the very essence for an Orc
computation. But time elapse is not explicitly modeled in either
the asynchronous or synchronous semantics in [20]. Modeling time
elapse explicitly is important for reasoning about real-time guaran-
tees of Orc programs. An Orc program may call various non-local
sites (for example, BBC or CNN news sites), and then no time guar-
antees can be given: the sites may give delayed responses or may
fail to respond. But an Orc program may also call local sites, such
as timers, for which very strong real-time guarantees can be given.
Our goal in this paper is to give a formal real-time operational se-
mantics of Orc that supports reasoning and automated verification
about such real-time properties of Orc programs.

Providing such a real-time operational semantics poses a num-
ber of technical challenges, which we tackle using the rewriting
logic approach to programming language semantics (see [17, 18]
and references there). The easy part is representing the SOS rules
of the asynchronous semantics given in [20]. For this, we use a
general technique, developed in [16] and summarized in Section
2.2, to faithfully map Modular Structural Operational Semantics
(MSOS) definitions in the sense of Mosses [21] to a corresponding
rewrite theory. We do exactly this for Orc’s asynchronous SOS se-
mantics in Section 4.2. The first nontrivial challenge is to capture
in our framework the Orc synchronous operational semantics given
in [20] as a restriction on the application of the asynchronous SOS
rules. This first challenge can be met in two alternative ways: (i) by
restricting the application of the corresponding rewrite rules using
the strategy language proposed in [10] and summarized in Sec-
tion 2.4; and (ii) by adding further conditions to the semantic rules,
thus making the use of strategies unnecessary. We describe both
approaches in this paper. The synchronous Orc semantics based
on method (i) is given in Section 4.3; and a real-time semantics
extending the synchronous semantics and based on method (ii) is
sketched in Section 5.1. The second nontrivial challenge is to give
a real-time formal operational semantics. For this we use the gen-
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eral method to represent real-time systems as rewrite theories first
proposed in [23] and supported by the Real-Time Maude tool [24].
Our real-time rewriting logic semantics for Orc is given in Section
5. But that leaves still open a third challenge, which is to give a
synchronous real-time formal semantics for Orc, in which internal
and external actions are given priority over time elapse. For this,
the two methods (i)–(ii) mentioned above can be used. Since each
has its advantages, we describe the application of both methods in
Section 5.1.

A pleasant side-effect of meeting all the above challenges is
that, since rewriting logic is a computational logic [14], which has
high-performance implementations supporting both execution and
automated verification such as Maude [8], we obtain for free: (i)
an Orc interpreter; and (ii) an Orc LTL model checker in which we
can verify safety and liveness properties of Orc programs. Section
6 illustrates the use of the Orc interpreter and the formal analysis
of Orc programs supported by the Orc model checker, which we
have obtained directly out of the real-time rewriting semantics of
Orc specified in Maude. We finish the paper with some concluding
remarks in Section 7.

2. Preliminaries
2.1 Rewriting Logic as a Semantic Framework

Rewriting logic [14] is a general semantic framework that unifies
in a natural way a wide range of models of concurrency. In par-
ticular, it is well suited to both give formal semantic definitions of
programming languages, including concurrent ones (see [17, 18]
and references there), and to model real-time systems [23]. Fur-
thermore, with the availability of high-performance rewriting logic
implementations, such as Maude [8], language specifications can
both be executed and model checked.

A rewrite theory is a formal description of a concurrent system,
including its static state structure and its dynamic behavior. In its
most general form, a rewrite theory is a 4-tuple R = (Σ, E, R, φ)
with:

• (Σ, E) a membership equational logic (MEL) theory [15], with
Σ a MEL signature having a set of kinds, a family of sets of
operators, and a family of disjoint sets of sorts, and E a set
of Σ-sentences, which are universally quantified Horn clauses
with atoms that are equations (t = t′) and memberships (t : s),
with t, t′ terms and s a sort,

• R a set of universally quantified labeled conditional rewrite
rules of the form:

(∀X) r : t → t′ if
^

i

pi = qi ∧
^

j

rj : sj ∧
^

l

wl → w′
l

where t, t′, pi, qi, rj , wl and w′
l are terms, and sj are sorts.

• φ : Σ → P(N) a function that assigns to each operator
symbol f in Σ of arity n > 0 a set of positive integers
φ(f) ⊆ {1, . . . , n} representing frozen argument positions
where rewrites are forbidden.

A rule in R gives a general pattern for a possible change or
transition in the state of a concurrent system. Changes are deduced
according to the set of inference rules of rewriting logic, which
are described in detail in [5]. Using these inference rules, a rewrite
theory R proves a statement of the form (∀X) t → t′, written
as R � (∀X) t → t′, meaning that, in R, the state term t can
transition to the state term t′ in a finite number of steps. A detailed
discussion of rewriting logic as a unified model of concurrency
and its inference system can be found in [14]. [5] gives a precise
account of the most general form of rewrite theories and their
models.

2.2 MSOS to Rewriting Logic Transformation

Modular structural operational semantics (MSOS) [21] specifica-
tions can be naturally mapped to semantically equivalent rewrite
theories in rewriting logic. In general, a rule in MSOS corresponds
to a conditional rewrite rule in rewriting logic. Meseguer and Braga
[16] described a semantics-preserving transformation from MSOS
to rewriting logic that results in modular rewrite theories and ac-
counts for the single-step MSOS rules. Given an MSOS specifi-
cation of the semantics of a programming language L, the trans-
formation uses a pair 〈P, R〉, called a configuration, where P is a
program text in L, and R is a record consisting of fields that con-
tain state information necessary for the semantics of P , such as
environments, stores, and traces.

The transformation also describes a method of controlling the
number of rewrites in the condition of a rewrite rule. This is re-
quired in such a transformation because SOS transitions are single-
step, whereas sequents in rewriting logic can involve an arbitrary
(but finite) number of steps because of the reflexivity and the tran-
sitivity inference rules of the logic. First, assuming P is a program
expression and R is a record, to achieve the one-step SOS behav-
ior, two more syntactic forms of a configuration 〈P, R〉 are defined:
[P, R] and {P, R}. Then, all the semantic definitions are specified
using rewrite rules of the form

{P, R} → [P ′, R′] if
n̂

i=1

{Pi, Ri} → [P ′
i , R

′
i] ∧ C

where C is (a possibly empty) conjunction of (conditional) equa-
tions and/or memberships. Now a one-step rewrite of 〈P, R〉 is
achieved by the following rewrite rule.

[STEP] : 〈P, R〉 → 〈P ′, R′〉 if {P, R} → [P ′, R′]

The reader is referred to [16] for a more detailed discussion of the
methodology and a proof of its semantics-preserving correctness.

2.3 The Maude System

Maude is a high-performance implementation of rewriting logic
and its underlying MEL sublogic, with syntax that is almost iden-
tical to the mathematical notation. A basic unit of specification
in Maude can either be a functional module, corresponding to a
MEL theory (Σ, E), or a system module, representing a rewrite the-
ory (Σ, E, R, φ). Functional modules are declared with the syntax
fmod 〈name〉 is 〈body〉 endfm, where 〈name〉 is a name given
to the module and 〈body〉 consists of module inclusion assertions,
sort and subsort declarations, operator symbols declarations, and
(possibly conditional) equations and membership axioms. System
modules, which are declared with the mod . . . endm keywords, may
additionally contain (possibly conditional) rewrite rules.

Maude provides several features and tools to formally analyze
specifications given as system modules. The features include: (1)
the rewrite command (abbreviated as rew), which applies in a
fair manner the rules, equations, and membership axioms in the
system module on a given term, resulting in a sample run of the
program specified by the module, and (2) the search command,
which performs a breadth-first search on the states reachable from
a given state while looking for states matching a given pattern and
satisfying a semantic condition. In effect, the search command
provides a semi-decision procedure for checking violations of in-
variants. Maude also provides an LTL model checker to verify more
complex LTL safety and liveness properties about finite state sys-
tems. The use of these tools for analyzing Orc programs is illus-
trated in Section 6. For a complete description of these features
and tools, and various other tools provided by Maude, the reader is
referred to the Maude book [7] and the Maude manual [8].
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L ∈ Labels
R ∈ Strategy names

B ∈ Basic Strategy ::= idle | fail | L | L[SL]
S, S1, S2 ∈ Strategy ::= R | B | S1; S2 | S1|S2

| S∗ | S+ | S? S1 : S2

SL ∈ Strategy List ::= S | S,SL
D ∈ Strategy Declaration ::= R := S

DL ∈ Strategy Specification ::= D | D, DL

Table 1. The syntax of a subset of Maude’s strategy language

2.4 The Maude Strategy Language

Maude’s strategy language [10] is a relatively simple language in
which strategy expressions specify how terms in a rewrite theory
are rewritten. The goal of the strategy language is to provide a
means of controlling the application of rules in a rewrite theory
while keeping these control mechanisms separate from the system
specifications given by that theory. The strategy language of Maude
achieves this separation by having strategy modules specifying
strategy expressions that are distinct from system modules, which
specify rewrite theories. Set-theoretically, the meaning of a strategy
expression S is a function that, when applied to a term t, yields
a (possibly empty) set of terms, which are the terms that can be
obtained by applying this strategy.

@ : Strat × TΣ(X) → P(TΣ(X))

This function is extended to sets of terms, in the obvious way, so
that if T ∈ P(TΣ(X)), then S@T =

S
t∈T S@t.

Besides providing basic strategies through the use of rule labels,
the strategy language permits combining these strategies into more
complex ones using several combinators. Furthermore, substrate-
gies may be specified for rewrite conditions of a rewrite rule. In the
rest of this section, only the subset of the strategy language that is
most relevant for this work is described. For a detailed discussion
of the entire language, the reader is referred to [10].

Table 1 shows the syntax of a subset of the strategy language.
The simplest strategies are idle, which does not affect the term to
which it is applied (i.e., idle @ t = {t}), and fail, which always
gives the empty set as its result (fail @ t = ∅). A basic strategy can
also be a label of a rule, which when applied to a term results in the
set of terms obtained by applying the rule to t. For a conditional
rewrite rule with n rewrite conditions, the label may optionally be
followed by a list of n strategy expressions controlling the way
the rewrite conditions are checked. If no such list is given, the
conditions are not restricted to any strategy and Maude’s breadth-
first search is applied to evaluate conditions.

Strategy expressions may be combined using regular expression
combinators: concatenation (;), union (|), and iteration (S∗ for zero
or more iterations and S+ for one or more iterations). Additionally,
there is the generalized conditional combinator S ? S1 : S2, which,
when applied to a term t, behaves as follows. S is first applied to
t resulting in a set T . If S succeeds (i.e. T �= ∅), then the result
of S1 applied to T is returned. Otherwise, if S fails (T = ∅), then
the result of applying S2 to the original term t is returned. Other
derived strategies may be defined using these combinators [10].

Finally, strategy expressions can be given names through strat-
egy declarations of the form R := S. This allows defining (mu-
tually) recursive strategies, in addition to modularly decomposing
large strategy expressions into smaller ones. A strategy specifica-
tion is simply a list of strategy declarations.

let(x, y, . . . ) A tuple constructor. Given a list of values, it
returns a tuple consisting of these values.

clock returns the current time as a non-negative inte-
ger.

atimer(t) returns a signal at time t.
rtimer(t) returns a signal after t time units.

signal returns a signal immediately.
if(b) returns a signal if b is true; otherwise it remains

silent.

Table 2. Fundamental sites in Orc

3. Orc and its Semantics
Orc is a theory of orchestration that models the smooth integration
of web services. It is based on the abstract notion of sites and
the composition of the services they provide. The Orc model is
fairly minimal, yet powerful enough to express a wide range of
computations [20]. Furthermore, Orc assumes a timed framework
in which services and object states may be time-sensitive.

A central concept in Orc is that of sites. A site is a basic ser-
vice that provides a computation of some kind. Sites are assumed
to exist, and the computations they provide constitute the data pro-
cessed by Orc expressions. A site, when called, produces at most
one value. When a site responds to a call with a value v, the site is
said to publish the value v. Finally, site calls are strict, in the sense
that a site call cannot be initiated before its parameters are bound
to concrete values.

There are six fundamental sites that are available to any Orc
program. These sites and the services they provide are shown in
Table 2, assuming t is a positive integer, b is a boolean, and x and
y are values of arbitrary types.

Complex expressions in Orc are built from smaller ones using
three composition operators: (1) the sequential composition oper-
ator (> x >), where x is a variable; (2) the symmetric paral-
lel composition operator (|), which expresses parallel threads of
computation; and (3) the asymmetric parallel composition operator
(where), which expresses a form of parallelism where some con-
current threads of computation can be selectively removed at some
stage in their execution. An Orc expression may, therefore, return
as its result a sequence of values of possibly different types, or it
may not return a value at all.

3.1 Orc Syntax and Informal Semantics

We adopt a variant of the syntax of Orc that encapsulates Orc dec-
larations and expressions into a single unit (an Orc program). This
variant originally appeared in an earlier version of [9]. The ex-
tended Orc syntax we use here is given in Table 3.1 An Orc pro-
gram consists of an optional list of declarations followed by an Orc
expression. A declaration is similar to a procedure declaration, in
that it consists of a name, a (possibly empty) list of formal param-
eters, and an expression representing the body of the procedure.
An expression can be either: (1) the silent site (0), which is a site
that never responds; (2) a site or an expression call having an op-
tional list of actual parameters; (3) the publishing of a value or a
variable; (4) a placeholder for an unfinished site call (more on this
later); or (5) the composition of two expressions by one of the three
composition operators. Two expressions may be composed either

1 In this syntax, we allow polyadic communications in site calls and
polyadic expression declarations and calls. We also extend the original syn-
tax with expressions that will be needed for defining the semantics later on.
The syntax, however, treats site names and variables as two separate enti-
ties, implying that a site cannot be bound in an expression or be used as a
formal parameter in a declaration, although a site may be used as an actual
parameter in a site or an expression call.
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sequentially with the sequencing operator > x >, or in parallel.
Parallel composition comes in two flavors: (1) symmetric composi-
tion, using |, where multiple threads execute concurrently returning
a (possibly empty) stream of values; and (2) asymmetric composi-
tion, using the where statement, in which the left expression exe-
cutes concurrently with possibly many threads of the right expres-
sion, choosing the first result published by any one of them. The
formal asynchronous semantics using SOS specifications is given
in Section 3.3. Below we give some examples illustrating the infor-
mal semantics.

3.2 Examples

To illustrate the behavior of the different composition operators,
we describe a few example Orc expressions, which can be found,
among many other examples, in [19, 20]. We will refer to some of
these expressions later in the paper. Also, to cut down on the use of
parentheses, we assume that the composition operators are ordered
in decreasing precedence as follows: > x >, |, where. We also
let > x > and where be right associative, and | be commutative
and fully associative.

The following is an expression (which we call TIMED-MCALL)
that calls site M four times, in intervals of one time unit each,
starting immediately.

M | rtimer(1) > x > M

| rtimer(2) > x > M

| rtimer(3) > x > M

The program TIMEOUT below encodes a form of timeout. It
consists of a declaration of an expression f that has an input
parameter t representing the timeout, and an expression call setting
the timeout to 3.

f(t) =def let(z) where z :∈ M | rtimer(t) > x > let(0); f(3)

In the call f(3), t is bound to 3 and a call to site M is made. If M
responds before 3 time units, then its value is the value published
by the expression, while the value 0 is published if no response
is received after 3 time units have elapsed. If M responds exactly
after 3 time units, either value is published.

Program PRIORITY below implements a prioritized site call:

DelayedN =def rtimer(1) > x > (let(u) where u :∈ N);
let(x) where x :∈ M | DelayedN

Site M is given priority over site N , in that a response from M ,
if received within one time unit, would be the value published by
the expression. Otherwise, either value published by M or N is
published.

The last example we present here illustrates a simple recursive
program. The following declares an expression that recursively
publishes a signal every time unit, indefinitely.

Metronome =def signal | rtimer(1) > x > Metronome

The expression Metronome can be used to repeatedly initiate an
instance of a task every time unit.

3.3 Asynchronous Structural Operational Semantics of Orc

The asynchronous operational semantics introduced in [20] (and
shown here in Figure 1 below) formalizes the general description of
the meanings of the various Orc features given above. The SOS se-
mantics is a highly non-deterministic semantics that allows internal
transitions (within an Orc expression) and external ones (interac-
tions with sites) to be interleaved in any order. This high degree of
non-determinism may not always be desirable, as described in Sec-
tion 4.2 of [20]. For example, in the expression DelayedN() | M ,
the call to M may be delayed, thus defeating the purpose of pri-
oritizing the call to M . In order to rule out such undesirable be-

Figure 1. Asynchronous semantics of Orc

haviors, a synchronous semantics is proposed in [20] by placing
further constraints on the application of SOS semantic rules of Fig-
ure 1. The synchronous semantics is arrived at by distinguishing
between internal and external events, and splitting the SOS tran-
sition relation ↪→ into two subrelations ↪→R, and ↪→A, and char-
acterizing set-theoretically, the complementary subsets of expres-
sions (quiescent vs. non-quiescent) to which they are respectively
applied. As we shall see in Section 4.3, in our rewriting semantics
this set-theoretic splitting into ↪→R, and ↪→A is captured by two
strategies ex and in combined in an overall strategy sync. However,
in the above asynchronous semantics and its synchronous refine-
ment, time is not explicitly modeled: it is only modeled implicitly
by the fact that some external events may not yet be available and
the expression becomes quiescent. We fully address this pending
issue in the context of the real-time rewriting semantics of Orc in
Section 5. Specifically, in Section 5.1 we capture the desired gen-
eralization with explicit real-time semantics of the sync strategy in
two alternative ways: (i) by means of the sync-timed strategy; and
(ii) by a rewriting semantics with additional equational conditions
that requires no strategies.

4. Instantaneous Rewriting Orc Semantics
In this section, we explain in some detail the rewriting semantics of
the asynchronous SOS definitions of Figure 1. Then, in Section 4.3
we characterize the synchronous semantics as the restriction on the
asynchronous semantics imposed by a suitable rewriting strategy.
We call both semantics instantaneous, in the sense that time elapse
is not yet modeled (this is done in Section 5). However, even
this instantaneous semantics has a rich computational granularity,
because within a given time interval various external responses
can be received from the environment, so that in the sense of [20]
the evaluation of an expression may go through several quiescent
states, followed by processing of new internal events after each
external event reception. Due to space limitations we cannot give all
details; they can be found in [2], including (in Appendix I there) the
complete Maude specification2. The complete set of rewrite rules in
our specification is also given in Appendix A.

Before giving the rewriting logic semantic definitions, we de-
scribe the basic infrastructure that is needed to facilitate specifi-
cation of the semantic rules. In addition to the declarations given
in Table 3, We assume the following sorted (meta-)variable dec-
larations throughout the rest of the paper, except where otherwise

2 The Maude specification can also be found at http://cs.uiuc.edu/
homes/alturki/ppdp07.
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D ∈ d1; . . . ; dn (A list of declarations)
E ∈ Expression Name

x, z ∈ Variable
M ∈ Site
c ∈ Constant
h ∈ Handle
P ∈ p1, . . . , pn (A list of actuals)
Q ∈ q1; . . . ; qn (A list of formals)

r ∈ Orc program ::= D ; f
d ∈ Declaration ::= E(Q) =def f

f, g ∈ Expression ::= 0 | M(P ) | E(P )
| f |g
| f > x > g
| f where x :∈ g
| ! c | ! x | ? h

p ∈ Actual Parameter ::= x | c | M
q ∈ Formal Parameter ::= x

Table 3. Extended syntax of Orc

indicated.

m, n ∈ Nat C ∈ ConstList r, r′ ∈ Record
ρ ∈ MsgPool σ ∈ Context h ∈ Handle
ĉ ∈ PreConst e ∈ Event t ∈ EventList
c ∈ Const

4.1 Semantic Infrastructure

Events. As for any labeled transition system, labels in the semantic
rules in Figure 1 represent events generated as a result of a configu-
ration evolving into another. Lists of such events characterize traces
of actions that a configuration may exhibit. The four possible event
constructors are shown below.

〈 , | 〉 : SiteName × ConstList × Handle × Nat → Event

? | : Handle × Const × Nat → Event

!! | : Const × Nat → Event

τ : → Event

The timed event M〈C, h|n〉 represents a site call made to site M
at time n with actual parameter list C. h is a fresh handle name
that uniquely identifies this particular call. On the other hand, a site
return with return value c occurring at time n and responding to the
call whose handle is h is represented by the event h?c|n. The third
event operator, !!c|n, denotes publishing a value c at time n, and,
finally, τ is an non-timed event representing a silent transition, as
usual.

Handles. A handle is a name that distinguishes a given site call
from all other unfinished site calls, which are calls waiting for a
response from the environment. Because handle names are simple
identifiers and are invisible to the Orc programmer, we represent a
handle as a term h(n), with n a natural number of sort Nat.

h : Nat → Handle

By the SITECALL rule of Figure 1, fresh handle names need to be
generated. This is accomplished by maintaining in a configuration
the next handle name to be used, which is updated appropriately as
the configuration evolves.

Contexts. Since expressions may be abstracted with expression
names, an environment needs to be maintained by the configuration
to resolve references to such names. This is achieved by having a
context structure in a configuration. A Context is a set of declara-
tions formed with an associative and commutative multiset union
operator ( , ), with mt as its identity element, and the multiset ele-
ments are terms of sort Decl (which is a subsort of Context).

mt : → Context

, : Context × Context → Context

Initially, a context is created out of the declaration list of an Orc
program (see Table 4) so that the following conditions hold: (1)
a later declaration in the list hides all previous declarations with
the same expression name; and (2) all declarations in the resulting
context are visible to each other. This implies that in a context,

an expression name has a unique defining declaration, and that
(mutual) recursion is directly available.

Messages. Site calls and returns involve wide-area communi-
cations. To model such communications, we introduce a message
pool, as a multiset of messages, into an Orc configuration. A mes-
sage is a triple of the form [M, C, h], where M is a site name to
which the message is targeted, C is either a list of constants or a
term of sort PreConst (more on this below), and finally h is a han-
dle name identifying the call that caused this message. Since not all
triples [M, C, h] are valid messages, the kinds [15] [ConstList] and
[Msg] are used instead of the sorts ConstList and Msg.

[ , , ] : SiteName × [ConstList] × Handle → [Msg]

Incoming messages to the configuration and outgoing messages
to the environment share the same format. In a message γ =
[M, C, h], if M is the term self (representing a reference back to
the configuration) and C is a term of sort PreConst (which sub-
sumes the case where C is a constant value of sort Const, since
Const is a subsort of PreConst), then γ is an incoming message
and represents a (potential) response that is waiting in the message
pool to be consumed by the configuration. On the other hand, if M
is a site name other than self and C is a list of constants, then γ
is an outgoing message destined for M , that was emitted into the
pool as a result of executing a site call. Otherwise, γ does not repre-
sent a valid message. All this is specified compactly in membership
equational logic using kind-level operators and (conditional) mem-
bership axioms to characterize valid messages of sort Msg.

[self, ĉ, h] : Msg

[M, C, h] : Msg if M �= self

Configurations. An Orc configuration constitutes a state of the
system. A configuration consists of an Orc expression and a record.

〈 , 〉 : Expr × Record → Conf

A record is a set of fields (built with an associative-commuta-
tive set union operator | ), where each field represents a piece of
information that we keep track of as the configuration evolves. In
our case, five fields are maintained in a record. These are: the trace
of events (tr : t), the context (con : σ), the clock (clk : clock(n)),
the pool of messages (msg : ρ), and the next available handle
name (hdl : h). As explained in Section 2.2, besides configurations
〈P, R〉, we also allow variants {P, R} and [P, R] to model single-
step rewrites.

Having introduced the required infrastructure, we are now ready
to discuss the rewriting semantics rules next.

4.2 Rewriting Semantics Rules

Site calls and returns. Site calls and site returns are specified using
two rewrite rules. The first of these rules models a site call.
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SITECALL:

{M(C), tr : t | msg : ρ | hdl : h(n) | clk : clock(m)) | r}
→ [?h(n), tr : t . M〈C, h(n)|m〉 | msg : ρ [M, C, h(n)] |

hdl : h(s(n)) | clk : clock(m) | r]
The strictness of site calls is respected in the above rule by requiring
the list of actual parameters to be a list of constant values (naturals,
booleans, a signal, ... etc). When such a site call is encountered, the
site call is replaced by the special expression (?h(n)), where h(n)
is the fresh handle name maintained in the configuration. At the
same time, a message targeted to M is emitted into the message
pool, a site call event is appended to the trace, and the handle
counter is updated using the successor function s.

In the Orc SOS rules the environment is treated as a “black
box”. This is reasonable, since responses from remote site calls
are unpredictable. However, to obtain an executable Orc semantics
that can be used as an interpreter, we somehow need to simulate
environment responses. This is done as follows: once the message
[M, C, h(n)] is emitted into the message pool, it is converted into
the message

[self, app(M, C, rand), h(n)],

which represents a potential response back to self. This message
contains as its contents the operation app applied to three argu-
ments. app is an operation of sort PreConst whose definition de-
pends on the value of its arguments. It serves two purposes. First,
it provides a uniform and abstract means by which the response of
a particular site can be modularly defined. Second, it associates a
pseudo- random delay, given by rand above, to responses of (ex-
ternal) sites, with the operational meaning that a well-formed re-
sponse is not generated until the delay reaches the value zero. Once
the delay is zero (and assuming the external site was known to the
environment), the term app(M, C, 0) is evaluated according to the
value of M to a constant value (a ground term of sort Const). Only
then, the response is ready to be consumed by the configuration,
which is modeled by the site return rule below.

SITERET:

{?h, tr : t | msg : ρ [self, c, h] | clk : clock(m) | r}
→ [!c, tr : t . h?c|m)) | msg : ρ | clk : clock(m) | r]

Besides consuming the message, the rule above replaces (?h) with
the expression publishing the value obtained, and generates the
appropriate event.

Publishing a value. The rule for publishing a value is quite
straightforward. The expression is replaced by 0, and the appro-
priate event is generated.

PUB : {!c, tr : t | clk : clock(m) | r}
→ [0, tr : t . (!!c|m)|clk : clock(m) | r]

Like a site call, publishing a value is strict, as it requires the variable
to be substituted with its value before its publishing takes place.

Expression calls. Unlike site calls, expression calls are not
strict. The actual parameter list of an expression call need not be
all constants for the call to be evaluated.

DEF : {E(P ), tr : t | con : σ, E(Q) =def f | r}
→ [f{P/Q}, tr : t . τ | con : σ, E(Q) =def f | r]

Using call-by-name semantics, the call is replaced with an instance
of the body of the corresponding defining equation, where actu-
als are substituted for the formals one at a time3. Moreover, a τ

3 Substituting one variable at-a-time does not pose a problem as it is here
equivalent to being done simultaneously. A variable can only be substi-

transition is recorded. Clearly, an expression call may entail an ar-
bitrarily complex computation, which may evaluate to a (possibly
empty) stream of values.

Sequential Composition. There are two cases, describing how
two sequentially composed expressions, f > x > g(x), may
evolve. The first is when f publishes a value c while evolving to
f ′. In this case, a new instance of g having c substituted for x is
created and is run in parallel with the (now evolved) composition
f ′ > x > g(x), while a τ event is generated. Thus, for each value
c published by the evolution of f , a new instance g{c/x} of g(x)
is created.

SEQ1V : {f > x > g, tr : t | r}
→ [(f ′ > x > g)|g{c/x}, tr : t . τ | r′]

if {f, tr : nil | r} → [f ′, tr : (!!c|m))|r′]
The other case, where f evolves while generating an event other
than publishing a value, is straightforward and is dealt with using
three other sequential composition rewrite rules.

Symmetric parallel composition. The semantic rule for paral-
lel composition is straightforward and resembles that of a process
calculus. It merely stipulates that expressions running in parallel are
allowed to evolve concurrently. Since the operator (|) is assumed
associative and commutative, only one instance of the rule is re-
quired.

Asymmetric parallel composition. In an expression of the
form g(x) where x :∈ f , the semantic rules allow g and f to
evolve concurrently, unless f publishes a value. When f publishes
a value c, the composition is replaced by g{c/x}. The rewrite rule
that does just that is shown below.

ASYM1V:

{g where x :∈ f, tr : t | r} → [g{c/x}, tr : t . τ | r′]
if {f, tr : nil | r} → [f ′, tr : (!!c|m) | r′]

Of course, any subexpression of g that requires the value of x in
order to make any progress would need to wait for f to publish its
first value. The other cases for asymmetric parallel composition are
similarly defined.

The key point about the above rewriting Orc semantics is that it
faithfully mirrors the SOS Orc semantics from [20] given in Figure
1. This follows from three key observations: (i) the SOS seman-
tics can first be put in MSOS format: this is a straightforward, me-
chanical transformation; (ii) the rewrite rules in the theory ROrc

described above, and in Appendix A, are, except for the additional
rules labeled COUNT, EVAL, and RAND which we have added for
execution purposes, the exact translation of the MSOS Orc rules by
the transformation from MSOS to rewriting logic summarized in
Section 2.2 and described in full detail in [16]; and (iii) by Theorem
1 in [16], there is a strong bisimulation between the MSOS seman-
tics of Orc and its corresponding rewriting logic semantics. Specif-
ically, the corresponding rewriting logic semantics is obtained by
removing from ROrc the rules labeled COUNT, EVAL, and RAND
added for execution purposes. Appendix A lists all rules.

4.3 The Synchronous Execution Strategy

The rewrite theory described above does not enforce any execution
strategy among instantaneous transitions of an Orc configuration.
It reflects the exact behavior of the SOS semantics specification
of Figure 1, which is in some sense too loose. In particular, site
returns may take place in an expression while site calls that are

tuted with a variable, a constant, or a site name. Moreover, since we use
the CINNI explicit substitution calculus [26], whenever renaming is needed
to avoid free variable capture, CINNI automatically reflects it in the substi-
tution term, keeping track of the right substitution (see [2, 1] for details).
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ready to be made are waiting. In what follows, we describe how, in
agreement with the synchronous semantics of [20], internal actions
(site calls, expression calls, and publishing of values) are given
precedence over the external action of receiving responses from the
environment using Maude’s strategy language.

First, the following “in” strategy is defined, where SEQ and
ASYM respectively denote the set of labels of rewrite rules for
sequential and asymmetric parallel compositions.

in := SITECALL | PUB | DEF |
SYM[in] | SEQ[in] | ASYM[in]

The strategy “in” applies one of the internal action rules. Note that
the strategy expression has to be recursive, since we must make
sure that only an internal action rule is applied while checking
a condition of a conditional rule. Similarly, the following “ex”
strategy, which applies the site return rule, either at the top or in
conditions of the SYM, SEQ or ASYM rules, is defined.

ex := SITERET | SYM[ex] | SEQ[ex] | ASYM[ex]

Now, the complete strategy expression specifying the desired
Orc execution behavior, can be given as

sync := STEP[in ? idle : ex]+

where STEP is the label of the step rule described in Section 2.2,
which represents a single step in the evolution of an Orc configu-
ration. At each step, the substrategy in ? idle : ex controls how the
condition of the step rule is checked. It tries (recursively) to match
and apply an internal action. If it succeeds, the resulting config-
uration is returned and the condition is satisfied. In this case, the
step is taken (at the top) with an internal action (this corresponds
to a ↪→A step in the sense of [20]). Otherwise, the external strategy
is attempted on the original Orc configuration (corresponding to a
↪→R step in the sense of [20]). If both substrategies fail, the condi-
tion is not satisfied and thus the step rule is not taken. In the next
section, we will show how this strategy can be extended to support
the timed semantics of Orc.

5. Timed Rewriting Orc Semantics
One important aspect of Orc that is outside the scope of the SOS
semantic definitions of Figure 1 is that of time elapse. Several fun-
damental sites such as atimer and rtimer provide services whose
meaning is dependent on time in a very precise and exact way, so
this needs to be modeled. The point is that even though responses
from atimer and rtimer are external events in the sense of [20],
these are nevertheless local sites for each Orc program, which do
not experience the unpredictable time delays and communication
failures inherent in the computational model for the responses from
non-local sites such as, say, CNN. Therefore, although no strong
guarantees may be given about non-local site invocations, never-
theless, due to its real-time character, an Orc program may provide
very strong guarantees for its behavior with respect to local site in-
vocations. In this section we give a formal specification of such a
real-time semantics. For this purpose, as usual for rewriting logic
semantic definitions of real-time systems [23], we use a (discrete)
time domain (maintained by the clock(n) field in a configuration),
and a “tick” rewrite rule to advance time:

TICK : {f, clk : clock(n) | r} → [f, clk : clock(s(n)) | δ(r)]
where s is the successor function. The function δ propagates the
effect of a clock tick down the record structure of a configuration.
For instance, it updates time delays of messages in the message
pool. By updating time delays, response messages from site calls
become eventually available. It also updates contents of messages
containing relative timing information, such as responses from the
rtimer(t) site.

5.1 The Timed Execution Strategy

By dealing with time explicitly, we are adding another dimension
along which Orc configurations could evolve. Care should be taken
to avoid introducing behaviors that are uninteresting or undesirable.
For instance, an Orc configuration that could take an instantaneous
transition might instead choose to keep advancing time indefinitely
without making any real progress. This should be avoided by giving
time-elapsing rewrites the lowest possible priority. That is, we
need to define a time-synchronous execution semantics, in which
a configuration is not allowed to advance its time unless it reaches
a state where no internal or external action, other than a time tick,
can be taken. Under this semantics, an Orc configuration can be
seen to evolve along two axes in a two-dimensional plane. One
axis is time, which is determined by discrete time clock ticks.
The other axis encompasses all other computations of the system,
which are the instantaneous transitions performed in a synchronous
way. Instantaneous computations are given precedence over ‘tick’
computations, in the sense that the system is always allowed to
evolve along the second ‘instantaneous’ axis as long as it can before
the next tick happens. Once it reaches a state where it can no
longer proceed along this instantaneous dimension, it takes a single
step forward in time and then the process is again repeated in this
fashion.

Despite its usefulness in eliminating some undesirable behav-
iors, the timed semantics sketched above has a limitation, as illus-
trated by the following example. Suppose that we have the declara-
tion E =def let(0) > x > E(). Now, using the above-mentioned
semantics, an Orc configuration whose expression is E() will pre-
vent time from ever advancing. However, for what we call “in-
stantaneously terminating” Orc programs, such as the Metronome
program described in Section 3.2, where the expression evaluation
always terminates within any single clock tick, this limitation is
avoided. Therefore, in our semantics, we assume that such non-
instantaneously terminating Orc programs are excluded.4

We describe below two approaches to specifying this timed
strategy in rewriting logic: one using Maude’s strategy language,
and the other purely equational and not requiring any strategies.
Since an implementation of the subset of Maude’s strategy lan-
guage that we use here is still under development as of this writing,
the equational approach has the advantage that it is currently ex-
ecutable and, furthermore, can be subjected to formal analysis by
model checking.

The Strategy Language Approach

To achieve the behavior described above, we can easily extend the
strategy expression sync-instant given in Section 4.3 for instanta-
neous transitions, so that the tick rule is taken into account . The
new strategy is

sync-timed := STEP[in ? idle : (ex ? idle : TICK)]+

In this strategy, internal transitions are given precedence over exter-
nal site response transitions, which are, in turn, given precedence
over the clock tick transition.

In the presence of delays, a simpler strategy having a similar
effect to the strategy above may be specified. More specifically,
assuming non-zero delays, responses from external sites are not
consumed by an Orc expression before at least one clock tick takes
place, and thereby having the effect of giving precedence to internal
actions over the site return action. This simpler strategy can be

4 We do not address the pragmatic issue of instantaneously terminating Orc
programs doing so within reasonable bounds. Having some bounds (for
example in number of rewrites needed) for their instantaneous termination
is of course important for the granularity of clock ticks that are then feasible
in practice.
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specified by the following expression:

timed := STEP[eager ? idle : TICK]+

where eager is defined as

eager := SITECALL | PUB | DEF | SITERET |
SYM | SEQ | ASYM

with SEQ and ASYM standing, respectively, for the labels of the
sequential and asymmetric parallel composition rules, as before.
Note that the strategy expression timed need not be recursive, since
the tick rule cannot match any of the rewrite conditions of the
instantaneous rules.

An Equational Approach

The effect of giving to the tick rule above the least priority possi-
ble can instead be achieved by making the rule conditional to an
eagerEnabled predicate as follows:

TICK : {f, clk : clock(n) | r} → [f, clk : clock(s(n)) | δ(r)]
if eagerEnabled({f, clk : clock(n) | r}) �= true

The predicate eagerEnabled is defined using a technique similar to
the one proposed in [24]. In this method, a predicate named eager-
Enabled on configurations is declared, which, given a configuration
C, should evaluate to true if and only if there exists an eager (that
is, instantaneous) rule using which C could rewrite to some other
configuration. The approach of [24], however, is not directly appli-
cable to our setting, because it assumes that rules have no rewrites
in their conditions. Here, we introduce a variant of that approach
that overcomes this limitation by taking advantage of some of the
properties of our specifications. We first declare the predicate as a
partial function as follows,

eagerEnabled : Conf → [Bool] [frozen]

where the predicate is declared as a frozen operator to avoid useless
rewrites in the configuration. Then, for each eager (that is, non-tick)
rule r : {E, R} → [E′, R′] if C ∧ Vn

i=1{Ei, Ri} → [E′
i, R

′
i]

in our rewrite theory, with C a possibly empty conjunction of
equational conditions (memberships and/or equations) and n ≥ 0,
we introduce an equation

eagerEnabled({E, R}) = true if C∧
n̂

i=1

eagerEnabled({Ei, Ri})

Intuitively, this states that a configuration is eager if there exists
a rewrite rule that matches the configuration and is such that: (i)
its equational conditions are satisfied under this matching, and
(ii) the controls of its rewrite conditions are configurations that
are themselves eager. Finally, the application of the tick rule is
subjected to the condition that the configuration is not eager. The
reader is referred to [2] for a detailed description and a proof
of correctness of a general construction of the eagerEnabled, not
just for the Orc case, but for a large class of rewrite theories
encompassing in practice many rewrite theories modeling small-
step SOS semantics.

Note that this specification using the eagerEnabled predicate is
equivalent to the strategy ‘timed’ given above in the strategy lan-
guage. The same construction can be used to equationally specify
a rewrite theory whose behavior is equivalent to the ‘sync-timed’
strategy, by using (in addition to the eagerEnabled predicate) an-
other predicate, called intAction, for which the site return rule is the
“lazy” rule and the internal action rules are the “eager” rules.

5.2 Site Definitions

In order to be able to experiment with the above real-time semantics
of the Orc language and execute and model check programs, sites,

especially fundamental ones, need to be specified. One important
design goal of this work was to keep definitions of sites separate
from Orc definitions, as they are supposed to be. This has been
achieved, in part, by defining the abstract application function app.
Then, separate modules that define sites can be declared and can be
used to give concrete definitions of the app function for each site of
interest. An example Maude specification of a simple site module
is that of the if(b) site shown below, which publishes a signal when
called with the value tr(true) (representing the truth value true).

mod IF-SITE is
inc ORC-SEMANTICS .
op if : -> SiteName [ctor] .
eq app(if, tr(true), 0) = sig .

endm

First, the site name is syntactically introduced, and then the se-
mantics of app is defined for it, with sig being a constant rep-
resenting a signal. Note that app(if, tr(false), 0) is a Pre-
Const term that does not reduce to any ground Const term, model-
ing a site not responding.

To add some basic computational power to our Orc specifica-
tion, we also define sites performing basic arithmetic functions, bi-
nary relations, and binary logical operations.5

6. Formal Analysis of Orc Programs
In this section we illustrate how the real-time operational seman-
tics we have developed can be used to experiment with Orc pro-
grams, explore traces of computations, and verify properties about
Orc programs. We first give the syntax of Orc specified in Maude6

in Table 4. Since Maude supports mixfix user-definable syntax, the
syntax in the Maude specification is a readable, typewriter version
of the original Orc syntax. In Maude, argument positions are indi-
cated by underscores. For example, the where composition opera-
tor is declared with syntax where :in approximating the original
syntax where :∈ .

Based on the algebraic properties of the Orc language constructs
[20], the sequential and asymmetric parallel composition operators
are declared right associative, while the symmetric parallel oper-
ator is fully associative, commutative, and has the identity zero.
Furthermore, the left annihilator axiom of sequential composition
is specified with an equation (using the eq keyword), as follows.

eq zero > X > E = zero .

In addition to the operators of Table 4, a few syntactic sugar
operators are defined so that the empty lists nilA and nilF need
not be given (e.g. a call with no actual parameters can be written as
S() instead of S(nilA)).

5 Responses from the sites clock, signal, atimer(t), and rtimer(t) are not
subjected to delays to preserve their meaning. let is also not subjected to
delays as it is assumed to be local to the expression being evaluated.
6 Note that in Maude each mixfix syntax declaration starts with an op
(for ”operator”) followed by the mixfix syntax declaration itself, followed
by ”:”, followed by the sorts (corresponding to nonterminals in a CF
grammar) of the arguments, followed by ”->”, followed by the sort of
expressions with that syntax. Precedence information can be added with
the prec attribute, and left- and right-associativity information with the
gather attribute. Furthermore, a binary syntax construct can be declared
with semantic axioms such as associativity (assoc), commutativity (comm),
and identity (id). In particular, associativity makes use of parentheses
unnecessary, and commutativity makes the order of arguments immaterial
(See Section 3 of the Maude manual [8]).
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fmod ORC-SYNTAX is
op _;_ : DeclList Expr -> Prog [prec 50] .
op nilD : -> DeclList .
op _;_ : DeclList DeclList -> DeclList
op __:=_ : ExprName FParamList Expr -> Decl [prec 30] .
op zero : -> Expr .
op _(_) : SiteName AParamList -> Expr [prec 10] .
op _(_) : ExprName AParamList -> Expr [prec 10] .
op !_ : IVar -> Expr [prec 5] .
op !_ : Const -> Expr [prec 5] .
op _>_>_ : Expr Var Expr -> Expr

[prec 15 gather (e & E)] .
op _|_ : Expr Expr -> Expr

[assoc comm id: zero prec 20] .
op _where_:in_ : Expr Var Expr -> Expr

[prec 25 gather (E & e)] .
op ?_ : Handle -> Expr [prec 1] .

endfm

Table 4. An excerpt from the functional module ORC-SYNTAX
which specifies the extended syntax of Orc in Maude.

Using these syntactic specifications, the program PRIORITY
given in Section 3.2, for instance, is represented as a term of the
the theory ORC-SYNTAX as follows7:

’eDelayedN := rtimer(1) > ’vz >
(let(’vu{0}) where ’vu :in ’sN()) ;

let(’vx{0}) where ’vx :in ’sM() | ’eDelayedN()

Before we get to the examples, a vital observation is in order.
Recall that time is kept track of using the clock(n) operator as
part of a configuration. This may directly cause the number of states
reachable from a given configuration to be infinite. Moreover, the
state space of the pseudo-counter used to generate random delays is
the set of natural numbers and, thus, causes the state space of an Orc
configuration to grow indefinitely, even for configurations that are
originally finite-state, which may severely limit our ability to ana-
lyze programs in the language. To resolve these issues, we set these
parameters so that the number of clock ticks is limited to the first
ten ticks, and the counter to the first five natural numbers, implying
that at most five pseudo-random numbers are generated. These two
parameters can be easily changed to better suit the example at hand
by appropriately adjusting the following two equations,

eq clock(9) = halt . and eq s_^5(counter) = counter .

Consider the program TIMEOUT given in Section 3.2. We can
simulate a run of the program using Maude’s rew command, as-
suming that M is a site that returns the value 1 (the operator [P]
constructs an initial configuration given an Orc program P).

Maude> rew [’eF ’vt := let(’vz{0}) where ’vz :in (’sM()
| rtimer(’vt{0}) > ’vx > ! 0) ; ’eF(3)] .

rewrites: 2004 in 60ms cpu (85ms real)
(33400 rewrites/second)

result Conf: < zero,(tr : tau . (’sM < nilA,h(0) | 0 >)
. (rtimer < 3,h(1) | 0 >) . (h(1) ? sig | 3) . tau .
tau . (let < 0,h(2) | 3 >) . (h(2) ? 0 | 3) . !! 0 | 3)
| (con : ’eF ’vt := let(’vz{0}) where ’vz :in ’sM(nilA)
| rtimer(’vt{0}) > ’vx > ! 0) | (clk : halt) | (msg :
[self,1,h(0)]) | hdl : h(3) >

The execution trace, given by the field indexed by tr, shows the
events that took place to reach the resulting configuration. The trace

7 Note that names are specified using quoted identifiers, with the different
classes of names distinguished by the first letter following the quote as
follows: variable names start with v, site names with s, and expression
names with e. For example, ’vx stands for the variable x, whereas ’sM
denotes the site M .

shows that the call to M has timed out, and thus the value 0 was
published (at clock tick 3). By increasing the timeout to, say 6, we
get the following run.

Maude> rew [’eF ’vt := let(’vz{0}) where ’vz :in (’sM()
| rtimer(’vt{0}) > ’vx > ! 0) ; ’eF(6)] .

rewrites: 1980 in 70ms cpu (102ms real)
(28285 rewrites/second)

result Conf: < zero,(tr : tau . (’sM < nilA,h(0) | 0 >)
. (rtimer < 6,h(1) | 0 >) . (h(0) ? 1 | 5) . tau .
(let < 1,h(2) | 5 >) . (h(2) ? 1 | 5) . !! 1 | 5) |
(con : ’eF ’vt := let(’vz{0}) where ’vz :in ’sM(nilA)
| rtimer(’vt{0}) > ’vx > ! 0) | (clk : halt) | (msg :
[self,sig,h(1)]) | hdl : h(3) >

In this run, the response from M (the value 1) is the value published
by the expression, since the response was delayed by 5 time units,
which is less than the timeout.

We can also verify some safety properties of Orc programs us-
ing the breadth-first search command of Maude. As an example,
consider the program TIMED-MCALL. We can verify that the prop-
erty that no two calls to M occur at the same time is satisfied in any
state that the program could evolve to. This can be achieved by is-
suing the following search command, for which no solution exists,
as expected (the arrow =>* stands for zero, one or more rewrites
starting from the given configuration).

Maude> search [nilD ; ’sM() | rtimer(1) > ’vx > ’sM() |
rtimer(2) > ’vx > ’sM() | rtimer(3) > ’vx > ’sM()]
=>* < E:Expr , (tr : e:EventList .

(’sM < nilA, H:Handle | N:Nat >) .
e’:EventList . (’sM < nilA, H’:Handle | N:Nat >) .
e’’:EventList) | R:Record > .

No solution.
states: 255017 rewrites: 14319638 in 840540ms cpu
(896223ms real) (17036 rewrites/second)

Using Maude’s LTL model checking capabilities, one can verify
more complex safety and liveness properties of finite-state systems.
We use the well-known Dining Philosophers problem (DF), of
which a specification in Orc is given in [20], to illustrate some of
these capabilities8.

Pi := fork[i](get)  fork[i′](get)  eat[i]() 
fork[i](put)  fork[i′](put)  Pi()

with i′ = i + 1 mod n. The full specification of DF in Maude can
be found in [2]. An operator df(n) is used to construct the above
solution of DF with n philosophers.

A fundamental property of DF is relative exclusion, which as-
serts that no two adjacent philosophers may eat at the same time.
This property is specified using the rel-excl(n) operator defined
below, with n the number of philosophers,

eq rel-excl(n) = [] re(n - 1, n) .
eq re(s(m), n) = ~(eats(s(m)) /\ eats((s(m) + 1) rem n))

/\ re(m,n) .
eq re(0, n) = ~(eats(0) /\ eats(1)) .

where the parameterized eats predicate is defined as follows.

eq < (eat() > Y > E) > Y’ > phil[i]() | E’, R >
|= eats(i) = true .

The predicate eats(i) is true in any state in which the ith philosopher
is currently eating, i.e. Pi is ready to call the eat site. Now we show

8 For this example, we assume no delays and limit the clock to a single
clock tick, since timing and delays are not relevant for this example and,
thus, no interesting behavior is lost under these assumptions. Note that �
is the special case of sequential composition in which no value is passed.
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that the relative exclusion property is satisfied by df(3) by issuing
the following LTL model checking command in Maude.

Maude> red modelCheck( { df(3) } , rel-excl(3) ) .
rewrites: 1511157 in 33010ms cpu (34527ms real)

(45778 rewrites/second)
result Bool: true

However, the program df(3) is not deadlock-free. This is be-
cause, for example, all philosophers may choose to pick their right
forks first at the same time, in which case, they will all be waiting
indefinitely for their left forks. To model-check this property we
axiomatize it in our theory as follows. We first note that a configu-
ration is deadlocked if it reaches a state where no transition (other
than the one advancing the clock) can be taken. Therefore, by the
definition of the eagerEnabled predicate, a configuration C being
deadlocked coincides with the eagerEnabled(C) predicate not be-
ing true. Therefore, we define the enabled predicate accordingly.

ceq < E , R > |= enabled = true
if eagerEnabled({ E , R }) .

Now, using this predicate and the operator no-deadlock,
which is simply the LTL formula [] enabled, we can use the
model checker to obtain a run of the configuration yielding a dead-
lock (the output of the run showing the counterexample is some-
what long and is mostly omitted here).

Maude> red modelCheck( { df(3) } , no-deadlock ) .
rewrites: 136741 in 2610ms cpu (2727ms real)

(52391 rewrites/second)
result ModelCheckResult: counterexample({< phil[0](nilA)

| phil[1](nilA) | phil[2](nilA),(tr : (nil).EventList)
| (con : (phil[0] nilF := fork[0](get) > ’vt > fork[1]
...
get, 0),h(0)]) | (hdl : h(0) # h(1) # h(2)) | t-forks
: fork[0] . fork[1] . fork[2] >, deadlock})

One solution to the deadlock problem is to impose a restriction
on the order in which the forks are picked up as follows. When the
first philosopher is hungry, he picks up his left fork first and then
his right fork. All other philosophers pick their right forks first.
The operator df-df(n) reflects this change to the DF specification
given above. The new specification is verified deadlock-free by the
model checker.

Maude> red modelCheck( { df-df(3) } , no-deadlock ) .
rewrites: 1547969 in 33660ms cpu (34969ms real)

(45988 rewrites/second)
result Bool: true

In [2], the SOS-based semantics given here is compared to a
more efficient, semantically equivalent rewriting semantics. The
more efficient semantics is obtained by following a reduction se-
mantics style in which the number of conditional rewrite rules is
minimized, and the rewrite conditions are eliminated. The reader is
referred to [2] for a detailed discussion of the reduction rewriting
semantics of Orc.

7. Concluding Remarks
We have given a formal real-time operational semantics for Orc
programs based on rewriting logic. Both time elapse, and the dif-
ferent execution priorities given to internal and external events by
an Orc program are faithfully modeled. Furthermore, the Maude
specification of this operational semantics definition provides both
an Orc interpreter and an Orc LTL model checker. Our approach
has some similarities with the various SOS semantics that have
been given for different timed process calculi, such as ATP [22]
and TLP [11], and real-time extensions to various process calculi,

such as extensions of ACP [4, 3], CCS [6], and CSP [25]. How-
ever, the alternative possibility of giving a faithful Orc semantics
by translating Orc into some of these timed process calculi seems
highly nontrivial.

The SOS-based rewriting semantics given here paves the way
for a more efficient rewriting specification in which determinis-
tic Orc features are modeled with equations, and only the non-
deterministic features of Orc are modeled using rewrite rules, and
where, furthermore, rules are made local (not restricted to work
only on configurations) and unconditional as much as possible.
Some progress has already been made in this direction. We intend
to continue this work with the goal of arriving at a physically dis-
tributed deployment of Orc using the socket programming capabil-
ities of Maude [7]. Such a distributed deployment would provide a
rich formal environment for the experimentation, analysis and ver-
ification of Orc programs, which could then be extended towards
a full-fledged, rewriting-based Orc implementation with associated
analysis and verification tools.
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A. The Instantaneous Rewriting Semantics Rules
of Orc in Maude

STEP:

〈f, r〉 → 〈f ′, r′〉 if {f, r} → [f ′, r′]

SITECALL:

{M(C), tr : t | msg : ρ | hdl : h(n) | clk : clock(m)) | r}
→ [?h(n), tr : t . M〈C, h(n)|m〉 | msg : ρ [M, C, h(n)] |

hdl : h(s(n)) | clk : clock(m) | r]
SITERET:

{?h, tr : t | msg : ρ [self, c, h] | clk : clock(m) | r}
→ [!c, tr : t . h?c|m)) | msg : ρ | clk : clock(m) | r]

PUB:

{!c, tr : t | clk : clock(m) | r}
→ [0, tr : t . (!!c|m)|clk : clock(m) | r]

DEF:

{E(P ), tr : t | con : σ, E(Q) =def f | r}
→ [f{P/Q}, tr : t . τ | con : σ, E(Q) =def f | r]

SYM:

{f |g, tr : t | r} → [f ′|g, tr : t . L | r′]
if {f, tr : nil | r} → [f ′, tr : L|r′]

SEQ1V:

{f > x > g, tr : t | r}
→ [(f ′ > x > g)|g{c/x}, tr : t . τ | r′]

if {f, tr : nil | r} → [f ′, tr : (!!c|m)) | r′]
SEQ1N1:

{f > x > g, tr : t | r} → [f ′ > x > g, tr : t . τ | r′]
if {f, tr : nil | r} → [f ′, tr : τ | r′]

SEQ1N2:

{f > x > g, tr : t | r} → [f ′ > x > g, tr : t . h?c|m | r′]
if {f, tr : nil | r} → [f ′, tr : h?c|m | r′]

SEQ1N3:

{f > x > g, tr : t | r}
→ [f ′ > x > g, tr : t . M〈C, h|m〉 | r′]

if {f, tr : nil | r} → [f ′, tr : M〈C, h|m〉 | r′]
ASYM1V:

{g where x :∈ f, tr : t | r} → [g{c/x}, tr : t . τ | r′]
if {f, tr : nil | r} → [f ′, tr : (!!c|m) | r′]

ASYM1N1:

{g where x :∈ f, tr : t | r}
→ [g where x :∈ f ′, tr : t . τ | r′]

if {f, tr : nil | r} → [f ′, tr : τ | r′]
ASYM1N2:

{g where x :∈ f, tr : t | r}
→ [g where x :∈ f ′, tr : t . h?c|m | r′]

if {f, tr : nil | r} → [f ′, tr : h?c|m | r′]
ASYM1N3:

{g where x :∈ f, tr : t | r}
→ [g where x :∈ f ′, tr : t . M〈C, h|m〉 | r′]

if {f, tr : nil | r} → [f ′, tr : M〈C, h|m〉 | r′]
ASYM2:

{g where x :∈ f, tr : t | r}
→ [g′ where x :∈ f, tr : t . L | r′]

if {g, tr : nil | r} → [g′, tr : L | r′]
RAND:

rand → floor((random(counter )/4294967296) × 10)

COUNT : counter → s(counter ) EVAL : counter → 0
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