
Reduction Semantics and Formal Analysis of
Orc Programs

Musab AlTurki 1 José Meseguer 2

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA

Abstract

Orc is a language for orchestration of web services developed by J. Misra that offers simple, yet powerful
and elegant, constructs to program sophisticated web orchestration applications. The formal semantics
of Orc poses interesting challenges, because of its real-time nature and the different priorities of external
and internal actions. In this paper, building upon our previous SOS semantics of Orc in rewriting logic, we
present a much more efficient reduction semantics of Orc, which is provably equivalent to the SOS semantics
thanks to a strong bisimulation. We view this reduction semantics as a key intermediate stage towards a
future, provably correct distributed implementation of Orc, and show how it can naturally be extended to a
distributed actor-like semantics. We show experiments demonstrating the much better performance of the
reduction semantics when compared to the SOS semantics. Using the Maude rewriting logic language, we
also illustrate how the reduction semantics can be used to endow Orc with useful formal analysis capabilities,
including an LTL model checker. We illustrate these formal analysis features by means of an online auction
system, which is modeled as a distributed system of actors that perform Orc computations.

Keywords: Orc, rewriting logic, formal verification, real-time semantics, web services

1 Introduction

At present, the reliability of web-related software is poor, to say the least; and
formal analysis is one of the most effective ways to increase the quality, reliability,
and security of webware. For example, formal specification and model checking
analysis of Internet Explorer has uncovered many, previously unknown, types of
address-bar and status bar spoofing attacks [8]. There is however, a substantial gap
between the level of the formal specifications readily amenable to analysis, and the
low level implementations of webware in conventional languages. This gap can be
narrowed by the use of model checkers for conventional languages such as Java or C,
which may be a reasonably practical way, though hard to scale up, to verify legacy

1 Email: alturki@cs.uiuc.edu
2 Email: meseguer@cs.uiuc.edu

Electronic Notes in Theoretical Computer Science 200 (2008) 25–41

1571-0661/$ – see front matter © 2008 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.04.091

mailto:alturki@cs.uiuc.edu
mailto:meseguer@cs.uiuc.edu
http://www.elsevier.com/locate/entcs

systems. But such a conventional approach to the design of webware is not, by any
means, the best way to design and verify future web-based systems.

This work is part of a longer-term research effort to explore a new webware design
and implementation approach based on two main ideas: (i) the systematic use of
formal executable specifications in rewriting logic to precisely capture the intended
semantics and to verify relevant properties; and (ii) the stepwise refinement of such
specifications into a provably correct distributed implementation. It helps of course
very much to begin with a type of webware that is mathematically elegant, simple,
novel, and promising in its practical applications. We have focused on J. Misra’s
Orc language, a simple and elegant language to orchestrate complex web services
[21,22,14]. In spite of its inherent simplicity, the formal semantics of Orc presents
interesting challenges. These challenges center around two main aspects of the Orc
semantics: (i) the inherent priority that internal actions should have over external
communication events; and (ii) the real-time nature of the language. In particular, a
standard SOS semantics is insufficient to capture the intended Orc semantics [22,1].

In a previous paper [1], we have used rewriting logic to capture the intended
semantics of Orc at the highest level possible, presenting an SOS-like rewriting se-
mantics that does justice to Orc’s real-time features. In this work we take two
steps towards the refinement of Orc specifications into a distributed implementa-
tion. Our first and most crucial step is the refinement of our original SOS-like
Orc semantics into a much more concurrent reduction semantics, which takes full
advantage of rewriting logic’s concurrent semantics, fully exploits rewriting logic’s
crucial distinction between equations and rewrite rules. Our three main contribu-
tions for this first step are: (i) showing how the real-time synchronous semantics
of Orc can be faithfully captured in the reduction semantics; (ii) establishing the
semantic equivalence between the reduction semantics and the SOS-like semantics;
and (iii) providing experimental evidence for the claim that the reduction semantics
is much more efficient than the SOS-like semantics.

The second refinement step is a simple, yet important extension of the first.
The Orc semantics as such focuses on the, possibly concurrent, evaluation of a
single Orc expression, abstracting away its interactions with external sites as “black
boxes” in an external environment. It is however very natural to view both Orc
expressions and sites as distributed objects, which interact with each other through
message passing. Therefore, in this second refinement step we encapsulate both Orc
expressions and sites as distributed objects, essentially reusing the already given
reduction semantics in the semantic specification of Orc expression objects. All this
can be done easily and naturally by using rewriting logic’s approach to distributed
objects [17]. Although still a specification, this distributed object semantics brings
the Orc refinement quite close to a future distributed implementation. Our work
also shows how nontrivial formal analyses of relevant Orc applications can be carried
out with good efficiency, even after these two steps of refinement. Specifically, we
show how Maude’s LTL model checker can be used to verify the requirements of an
online Orc auction system realized as a distributed collection of Orc expression and
site objects.

M. AlTurki, J. Meseguer / Electronic Notes in Theoretical Computer Science 200 (2008) 25–4126

The paper is organized as follows. Section 2 discusses related work and presents
preliminaries on Orc, rewriting logic, and Maude. The reduction semantics is then
presented in Section 3. Its further refinement into a distributed object-based se-
mantics and the verification of an online auction case study are covered in Section
4. Conclusions and future work are discussed in Section 5.

2 Related Work and Preliminaries

Several Orc semantics have already been given. A precise but informal operational
semantics for Orc was given by Misra in [21]; we consider this as the standard
against which the success of any formal operational semantics should be measured.
A formal SOS asynchronous operational semantics has been given by Misra and
Cook in [22]; but since this asynchronous semantics allows some undesirable be-
haviors, a refinement of the asynchronous semantics into a synchronous semantics,
distinguishing between internal and external actions was also given in [22]. Differ-
ent denotational semantics of Orc for reasoning about identities and algebraic laws
about the language [13,14], and for formally analyzing dependencies in program
execution [25] were also proposed. Moreover, encodings of Orc in Petri nets and
the join calculus that reveal some of the subtleties of the semantics of the language
were given in [5]. Most recently, Ian Wehrman et al. [27] proposed a relative-time
operational semantics of Orc by extending the asynchronous SOS relation of [22] to
timed events and time-shifted expressions.

Our work, along with some of the operational approaches cited above, has sim-
ilarities with the various SOS semantics that have been given for different timed
process calculi, such as ATP [23] and TLP [12], and real-time extensions to various
process calculi, such as extensions of ACP [3,4], CCS [7], and CSP [26].

2.1 The Orc Programming Model

Orc is a theory of orchestration, proposed by J. Misra [21], to model the smooth
integration of web services. The Orc model is fairly minimal, yet powerful enough
to express a wide range of computations [22]. Orc is based on the abstract notion of
sites and the composition of the services they provide. A site is a basic service that
provides a computation of some kind. For instance, CNN (d) and BBC (d) are sites
that return the news for the given date d, and add(x, y) is one that returns the sum
of its arguments. Sites are assumed to exist, and the computations they provide
constitute the data processed by Orc expressions. A site, when called, produces
at most one value. When a site responds to a call with a value v, the site is said
to publish the value v. Moreover, site calls are strict, in the sense that a site call
cannot be initiated before its parameters are bound to concrete values.

There are six fundamental sites that are available to any Orc program. These
sites and the services they provide are shown in Figure 1, assuming t is a non-
negative integer, b is a boolean, and x and y are values of arbitrary types.

The extended Orc syntax we use here is given in Figure 2. An Orc program
consists of an optional list of declarations followed by an Orc expression. A dec-

M. AlTurki, J. Meseguer / Electronic Notes in Theoretical Computer Science 200 (2008) 25–41 27

let(x, y, . . .) returns a tuple consisting of its argument values.

clock returns the current time as a non-negative integer.

atimer(t) returns a signal at time t.

rtimer(t) returns a signal after t time units.

signal returns a signal immediately.

if (b) returns a signal if b is true; otherwise it remains silent.

Fig. 1. Fundamental sites in Orc

D ∈ d1; . . . ; dn (A list of declarations)

E ∈ Expression Name

x ∈ Variable

M ∈ Site

c ∈ Constant

h ∈ Handle

P ∈ p1, . . . , pn (A list of actuals)

Q ∈ q1; . . . ; qn (A list of formals)

Orc program ::= D ; f

d ∈ Declaration ::= E(Q) =def f

f, g ∈ Expression ::= 0 | M(P) | E(P)

| f | g

| f > x > g

| g where x :∈ f

| ! c | ! x | ? h

p ∈ Actual Parameter ::= x | c | M

q ∈ Formal Parameter ::= x

Fig. 2. Extended syntax of Orc

laration consists of a name, a (possibly empty) list of formal parameters, and an
expression representing its body. An expression can be either: (1) the silent site
(0), which is a site that never responds; (2) a site or an expression call having an
optional list of actual parameters; (3) the publishing of a value or a variable; (4) a
placeholder for an unfinished site call; or (5) the composition of two expressions by
one of the three composition operators. Two expressions may be composed either
sequentially with the sequencing operator > x >, or in parallel. Parallel com-
position comes in two flavors: (1) symmetric composition, using |, where multiple
threads execute concurrently returning a (possibly empty) stream of values; and (2)
asymmetric composition, using the where statement, in which the left expression
executes concurrently with possibly many threads of the right expression, choosing
the first result published by any one of them.

A formal description of the (untimed) asynchronous semantics of Orc was given
as an SOS specification in [22], and is shown here in Figure 3. The reader is
referred to [22], for a detailed discussion of the specification. Here, only a few
subtleties are emphasized. We first note that symmetric parallel composition f | g

in Orc is similar to that of a process calculus in which both expressions f and g

can evolve concurrently without any restriction. However, in asymmetric parallel
composition g where x :∈ f , once f publishes its first value (the Asym1V rule), the
remaining computations of f are discarded and the published value is bound to x in
g. Therefore, it is possible for some computations of g to be blocked waiting for a
value for x. We also note that in sequential composition f > x > g, a new instance
of g is created for every value published by f (the Seq1V rule), which generalizes
the usual notion of sequential composition in sequential programming languages.
For example, consider the following program, which can be found, among many

M. AlTurki, J. Meseguer / Electronic Notes in Theoretical Computer Science 200 (2008) 25–4128

h fresh

M(c)
M〈c,h〉

↪→ ?h

(SiteCall)

?h
h?c
↪→ !c (SiteRet)

!c
!c
↪→ 0 (Pub)

E(Q) =def f ∈ D

E(P)
τ
↪→ f{P/Q}

(Def)

f
l

↪→ f ′

f | g
l

↪→ f ′ | g
(Sym1)

g
l

↪→ g′

f | g
l

↪→ f | g′
(Sym2)

f
!c
↪→ f ′

f > x > g
τ
↪→ (f ′ > x > g) | g{c/x}

(Seq1V)

f
l

↪→ f ′ l �= !c

f > x > g
l

↪→ f ′ > x > g
(Seq1N)

f
!c
↪→ f ′

g where x :∈ f
τ
↪→ g{c/x}

(Asym1V)

f
l

↪→ f ′ l �= !c

g where x :∈ f
l

↪→ g where x :∈ f ′
(Asym1N)

g
l

↪→ g′

g where x :∈ f
l

↪→ g′ where x :∈ f
(Asym2)

Fig. 3. Asynchronous semantics of Orc

other examples, in [21,22].

DelayedN =def (rtimer(1) > x > let(u)) where u :∈ N ;

let(x) where x :∈ (M | DelayedN)

The program implements a prioritized site call. Site M is given priority over site
N , in that a response from M , if received within one time unit, would be the
value published by the expression. Otherwise, either value published by M or N is
published.

2.2 Rewriting Logic and Maude

Rewriting logic [16] is a general semantic framework that unifies in a natural way
a wide range of models of concurrency. In particular, it is well suited to both give
formal semantic definitions of programming languages, including concurrent ones
(see [15,20] and references there), and to model real-time systems [24]. Furthermore,
with the availability of high-performance rewriting logic implementations, such as
Maude [10], language specifications can both be executed and model checked.

A rewrite theory is a formal description of a concurrent system, including its
static state structure and its dynamic behavior. In its most general form, a rewrite
theory is a 4-tuple R = (Σ, E, R, φ) with:

• (Σ, E) a membership equational logic (MEL) theory [18], with Σ a MEL signature
having a set of kinds, a family of sets of operators, and a family of disjoint sets of
sorts, and E a set of Σ-sentences, which are universally quantified Horn clauses
with atoms that are equations (t = t′) and memberships (t : s), with t, t′ terms
and s a sort,

• R a set of universally quantified labeled conditional rewrite rules of the form:

(∀X) r : t → t′ if
∧

i

pi = qi ∧
∧

j

rj : sj ∧
∧

l

wl → w′
l

M. AlTurki, J. Meseguer / Electronic Notes in Theoretical Computer Science 200 (2008) 25–41 29

where r is a label, t, t′, pi, qi, rj , wl and w′
l are terms, and sj are sorts.

• φ : Σ → P(N) a function that assigns to each operator symbol f in Σ of arity
n > 0 a set of positive integers φ(f) ⊆ {1, . . . , n} representing frozen argument
positions where rewrites are forbidden.

A rule in R gives a general pattern for a possible change or transition in the
state of a concurrent system. Changes are deduced according to the set of inference
rules of rewriting logic, which are described in detail in [6]. Using these inference
rules, a rewrite theory R proves a statement of the form (∀X) t → t′, written as
R � (∀X) t → t′, meaning that, in R, the state term t can transition to the state
term t′ in a finite number of steps. A detailed discussion of rewriting logic as a
unified model of concurrency and its inference system can be found in [16]. [6] gives
a precise account of the most general form of rewrite theories and their models.

Maude is a high-performance implementation of rewriting logic and its under-
lying MEL sublogic, with syntax that is almost identical to the mathematical no-
tation. A basic unit of specification in Maude can either be a functional module,
corresponding to a MEL theory (Σ, E), or a system module, representing a rewrite
theory (Σ, E, R, φ). Besides the ability to execute a system module’s specification
(using the rewrite command) and to systematically search its state space (using
the breadth-first search command), Maude provides an LTL model checker to ver-
ify complex LTL safety and liveness properties about finite state systems. For a
complete description of Maude and its features, the reader is referred to [9].

3 Reduction Semantics of Orc

In previous work [1], we have developed a formal semantics of Orc in rewriting
logic based on the SOS specifications of Figure 3. The semantics was in some sense
a direct translation of the SOS specifications into a rewrite theory Rsos

Orc using a
semantics-preserving MSOS-to-rewriting logic transformation [19]. Therefore, the
rewriting semantics given by Rsos

Orc is readily understandable and its correctness is
an immediate result of the correctness of the transformation used. However, Rsos

Orc

makes extensive use of conditional rewrite rules (corresponding to the rules in the
SOS specifications) which cannot be converted into equations without destroying
the correctness of the semantics. Moreover, most of these rewrite rules, besides
being conditional, have rewrites in their conditions, which is typical of the SOS
specification style. In practice, this means that their execution, which uses breadth-
first search to satisfy the rewrite conditions, is quite expensive and inefficient. In
addition, all the rules in Rsos

Orc are system-wide rules defined at the configuration
(state) level, forcing an interleaving semantics and not exploiting rewriting logic’s
features to express concurrent computations.

In this section we develop a rewriting semantics specification of Orc that, unlike
Rsos

Orc, is not based on the structural operational semantic rules of Figure 3, but
is instead based on the inherently distributed semantics of rewriting logic. This
rewriting semantics is in the style of what is usually called reduction semantics, but
has the added advantage of using both equations and rules, thus achieving a simpler,

M. AlTurki, J. Meseguer / Electronic Notes in Theoretical Computer Science 200 (2008) 25–4130

more flexible semantics and a smaller state space, since only transitions caused by
rules create new states in the state space. The proposed specification, which we
will henceforth call Rred

Orc, is still operational, in that it describes in detail how Orc
programs are evaluated, and is, in fact, semantically equivalent to Rsos

Orc, in the
sense that, given any Orc program P , the state transition systems of the semantics
of P given by Rsos

Orc and Rred
Orc are strongly bisimilar. However, by minimizing the

number of rewrite rules and reducing their complexity, we achieve a simpler and
indeed superior semantic specification that can be executed and analyzed much
more efficiently. Before discussing the rewriting semantics specifications, we briefly
describe the semantics infrastructure required (see [2] for a detailed description).

3.1 Semantic Infrastructure

A state in the evolution of an Orc program is represented with an Orc configuration.
A configuration is a pair 〈f, r〉 with f an Orc program and r a record, which is a
set of fields (built with an associative-commutative set union operator |) repre-
senting the different semantic entities required to correctly capture the semantics
of f , such as environments and stores. By abstracting such semantic entities with
the notion of fields, we obtain generality and modularity in the specification of lan-
guage semantics, as explained in [19]. In particular, there are five fields in an Orc
configuration, which are briefly described below.

Messages: The messages field is of the form (msg : ρ), where ρ is a pool (multiset)
of messages in transit, modeling site calls generated by the expression component
f of the configuration, and incoming site returns from the environment.

Context: The context field (con : σ) is an environment mapping expression names
to expression definitions. An expression definition in σ may refer to names in the
environment allowing definitions of (mutually) recursive Orc programs.

Handle: The handle field (hdl : hn) maintains the next available handle name hn,
with n a natural number. By the SiteCall rule of Figure 3, fresh handle names
need to be generated when site calls take place. Handle names serve as identifiers
for pending site calls; a handle identifies which message in the message pool ρ

belongs to a given unfinished site call in the Orc program f .

Trace: The trace field (tr : t) records a list of events t representing the transitions
undergone by the Orc program 3 . The four event types are site calls, site returns,
publishing of values, and the unobservable event τ .

Clock: The clock field (clk : cm) maintains a discrete time global clock modeled
using the domain of natural numbers (m is a natural number). We shall see later
in Section 3.4 how the clock field is used to give the timed semantics of Orc.

Therefore, based on the description given above, the general form of an Orc
configuration is 〈f,msg : ρ | con : σ | tr : t | hdl : hn | clk : cm〉.

3 Unlike the SOS-based rewriting semantics of [1], the trace field is entirely optional for the semantics
described in this paper. However, in order to preserve equivalence with the aforementioned semantics, we
opt to keep this field in the specifications discussed in this section (see Section 3.5).

M. AlTurki, J. Meseguer / Electronic Notes in Theoretical Computer Science 200 (2008) 25–41 31

3.2 Rewrite Rules and Equations

We now specify the rewrite theory Rred
Orc = (Σ, E, R, φ) using the above semantic

infrastructure. Rred
Orc captures four actions an Orc configuration can take: (1) calling

a site, (2) calling an expression, (3) publishing a value, and (4) returning a value
from a site. In this section, we list and discuss all the rules R and some of the
equations of E. A complete discussion of all the equations can be found in [2].

A common characteristic of the specifications of the actions mentioned above
is the need to propagate information back and forth between a subterm of an Orc
expression and the configuration it is contained within. This propagation of in-
formation is specified using auxiliary functions that are defined inductively on the
structure of an expression. In the following paragraphs, we describe these actions
and auxiliary functions in some detail.

Site Call. A site call is modeled by the following two rewrite rules.

SiteCall : 〈f, r〉 → 〈sc↑(f ′, M, C), r〉 if f → sc↑(f ′, M, C)

SiteCall* : M(C) → sc↑(γ,M,C)

with γ a constant expression representing a temporary place holder expression. A
site call subterm of an expression f rewrites to an operator (sc↑) that propagates
the call to the root of f using, among others 4 , the following equations,

sc↑(f1, M, C) | f2 = sc↑(f1 | f2, M, C) if f2
= 0,

sc↑(f1, M, C) > x > f2 = sc↑(f1 > x > f2, M, C),

sc↑(f1, M, C) where x :∈ f2 = sc↑(f1 where x :∈ f2, M, C),

f2 where x :∈ sc↑(f1, M, C) = sc↑(f2 where x :∈ f1, M, C).

Once the root of the expression is reached, the effect of the call is reflected in the
containing configuration, using the following equation,

〈sc↑(f, M, C), tr : t | msg : ρ | hdl : hn | clk : cm | r〉
= 〈sc↓(f, hn), tr : t.M〈C, hn | m〉 | msg : ρ[M,C, hn] | hdl : hn+1|clk : cm|r〉

The effect comprises: (i) the emission of a message [M,C, hn] to the message
pool; (ii) recording of a site call event M〈C, hn|m〉 in the trace (where m is the
time at which the event occurs); (iii) updating the handle counter for the next
site call; and (iv) replacing the original expression sc↑(f,M,C) by the expression
sc↓(f, hn). Since the handle hn needs to propagate back to the subterm where
the site call was made (which was temporarily substituted by the expression γ),
sc↑(f, M, C) does not rewrite immediately to f , but rather to an operator, sc↓,
that traverses down the expression tree until it reaches the appropriate subterm

4 Concurrent execution of site calls, expression calls and publishing of values is avoided by equations that
will introduce an error expression in such cases, see [2].

M. AlTurki, J. Meseguer / Electronic Notes in Theoretical Computer Science 200 (2008) 25–4132

where the handle is inserted.

sc↓(f1 | f2, h) = sc↓(f1, h) | sc↓(f2, h) if f1
= 0 ∧ f2
= 0,

sc↓(f1 > x > f2, h) = sc↓(f1, h) > x > f2

sc↓(f1 where x :∈ f2, h) = sc↓(f1, h) where x :∈ sc↓(f2, h),

sc↓(M(P), h) = M(P), sc↓(0, h) = 0, sc↓(!x, h) = !x, sc↓(!c, h) = !c,

sc↓(E(P), h) = E(P), sc↓(?h′, h) = ?h′, sc↓(γ, h) = ?h.

Expression Call. The specification of an expression call is similar to a site call, in
that two operators ec↑ and ec↓ are defined to propagate the call and its effect to
and from the enclosing configuration (see [2] for their defining equations). First,
an expression call is modeled with the following rewrite rules.

Def : 〈f, r〉 → 〈ec↑(f ′, E, P), r〉 if f → ec↑(f ′, E, P)

Def* : E(P) → ec↑(γ,E, P)

Then, by means of ec↑, the call is propagated up the expression tree to the enclos-
ing configuration, where the effect of the call (appending a τ event to the trace) is
recorded and the required declaration is accessed. Using call-by-name semantics,
the call is replaced with an instance of the body of the corresponding defining
equation. The resulting expression is then propagated back to the appropriate
subterm, using the ec↓ operator.

Publishing a Value. Publishing a value is modeled by the following rewrite rules.

Pub : 〈f, r〉 → 〈pub(f ′, c), r〉 if f → pub(f ′, c)
Pub

τ : 〈f, r〉 → 〈pubτ (f ′), r〉 if f → pubτ (f ′)
Pub* : !c → pub(0, c)

The publishing expression rewrites to an operator pub that replaces it with the
zero expression 0 and then initiates the process of propagating the published
value c up the expression tree (see the equations in [2]). If c is not bound in the
expression, the value is propagated all the way to the top and a publish event is
recorded in the enclosing configuration. Otherwise, if the value published is bound
by a sequential composition expression or an asymmetric parallel composition
expression, then one of the following equations applies:

pub(f, c) > x > g = pubτ (f > x > g | g{c/x})
g where x :∈ pub(f, c) = pubτ (g{c/x})

The equations reflect the semantics specified by the SOS rules Seq1V and
Asym1V of Figure 3. They also transfer the propagation task to another op-
erator pubτ , which ultimately causes a τ event to be recorded in the trace field
of the configuration.

Site Return. Although, the environment in the SOS specifications of Figure 3 is
treated as a “black box” with unpredictable responses from remote sites, we need
to simulate environment responses in order to arrive at an executable specifica-
tion. This is achieved in the following way. Once a message [M,C, hn] is emitted

M. AlTurki, J. Meseguer / Electronic Notes in Theoretical Computer Science 200 (2008) 25–41 33

into the message pool as a result of a site call, it is converted into the message
[self , app(M,C, rand), hn], which represents a potential response back to self , a
reference to the current expression. The operator app(M, C, rand), whose defini-
tion depends on the site M , associates a pseudo-random delay to responses from
remote sites. Once a response from M is returned, the site return rule may fire.

SiteRet : 〈f, tr : t | msg : ρ [self, c, h] | clk : cm | r〉 →
〈sr(f, c, h), tr : (t.h?c|m) | msg : ρ | clk : cm | r〉 if h ∈ handles(f)

Application of the site return rule is subjected to the condition that the handle
name of the message to be consumed is referenced in f . This is to avoid useless
transitions that could take place when a thread, having an unfinished site call,
is pruned using the where statement. If the condition is satisfied, the incoming
message is consumed, a site return event h?c|m is generated, and the expression
f is replaced with an operator sr(f, c, h) that propagates the return value down
the expression tree to the appropriate pending call (see the equations in [2]).

3.3 Asynchronous versus Synchronous Execution Strategies

The rewrite theory described above does not enforce any execution strategy among
instantaneous transitions of an Orc configuration as it allows internal transitions
within an Orc expression (site calls, expression calls, and publishing of values)
and the external transition of interacting with sites (site returns) to be interleaved
asynchronously in any order. It reflects the exact behavior of the SOS semantics
specification of Figure 3, which is in some sense too loose. In particular, site returns
may take place in an expression while site calls that are ready to be made are
waiting. For example, in the expression DelayedN | M , the call to M may be
delayed, thus defeating the purpose of prioritizing the call to M . This issue was
discussed in [22], where a synchronous semantics is proposed by placing further
constraints on the application of SOS semantic rules of Figure 3. The synchronous
semantics is arrived at by distinguishing between internal and external events, and
splitting the SOS transition relation ↪→ into two subrelations ↪→R, and ↪→A, and
characterizing set-theoretically, the complementary subsets of expressions (quiescent
vs. non-quiescent) to which they are respectively applied.

In the context of rewriting logic, we showed in [1] how this restriction can be
captured precisely in the SOS-based rewriting semantics using two alternative ap-
proaches: (1) strategy expressions [11]; and (2) equationally defined predicates. Al-
though these two approaches are readily applicable to the rewrite theory developed
here, we focus our attention in this paper on the latter approach, because strategy
expressions are, as of this writing, not yet fully supported in Maude. We obtain a
synchronous reduction semantics of Orc by means of a more precise version of Rred

Orc

that gives the site return rule the lowest priority among the instantaneous actions.
We first introduce the notion of an active expression.

Definition 3.1 The set of active expressions factive in Rred
Orc is the smallest set

generated by the following rules.

M. AlTurki, J. Meseguer / Electronic Notes in Theoretical Computer Science 200 (2008) 25–4134

(i) M(C), E(P), and !c are all in factive.

(ii) f | g ∈ factive if f ∈ factive or g ∈ factive.

(iii) f > x > g ∈ factive if f ∈ factive.

(iv) g where x :∈ f ∈ factive if f ∈ factive or g ∈ factive.

Note that our notion of an active expression exactly corresponds to the non-
quiescent expression in [22]. This notion can be easily equationally captured by a
predicate active : Expr → [Bool] [frozen] (see [2] for its defining equations), which
is then used to limit the application of the SiteRet rules, as follows

SiteRet : 〈f, tr : t | msg : ρ[self, c, hn] | clk : cm | r〉 →
〈sr(f, c, hn), tr : (t.hn?c|m) | msg : ρ | clk : cm | r〉

if hn ∈ handles(f) ∧ active(f)
= true

3.4 Timed Semantics

An important aspect of Orc is that of time elapse. Transitions of an Orc program,
such as DelaydN , may occur at different times. Moreover, responses from non-local
sites, such as CNN and BBC , may experience unpredictable delays and communica-
tion failures, which are inherent in Orc’s computation model. This is in contrast to
local sites, such as atimer and rtimer , for which Orc provides strong temporal guar-
antees. In order to be able to reason about real-time guarantees of Orc programs,
time elapse needs to be modeled explicitly. For this purpose, as usual for rewriting
logic semantic definitions of real-time systems [24], we use a (discrete) time domain
(maintained by the clock field in a configuration), and an additional rewrite rule,
the “tick” rule, to advance time: 〈f, clk : cm | r〉 → 〈f, clk : cm+1 | δ(r)〉, where δ

is a function that updates the record r in the state of the configuration to reflect
the elapse of one time unit. However, as explained in [1], the addition of the tick
rule may introduce uninteresting or undesirable behaviors. For instance, an Orc
configuration that could make an instantaneous transition might instead choose to
keep advancing time indefinitely without making any real progress. This should be
avoided by giving time-elapsing rewrites the lowest possible priority. That is, we
need to define a time-synchronous execution semantics, in which a configuration
is not allowed to advance its time unless it reaches a state where no internal or
external action, other than a time tick, can be taken 5 . Therefore, the theory Rred

Orc

specifying the synchronous semantics of Orc is further extended in the following
way. We first define an eager configuration as one that can make an instantaneous
action.

Definition 3.2 An Orc configuration C in Rred
Orc is eager if C is of one of the following

forms: (i) 〈f, r〉 with f ∈ factive; or (ii) 〈f,msg : ρ [self, c, hn] | r〉 if h ∈ handles(f).

This notion of eager configurations can be easily captured by a predicate eager :
Conf → [Bool] [frozen], which evaluates to true if and only if it is applied to a

5 This time-synchronous strategy has a limitation, for a discussion of which the reader is referred to [1].

M. AlTurki, J. Meseguer / Electronic Notes in Theoretical Computer Science 200 (2008) 25–41 35

configuration that can make an instantaneous action (see [2] for the equations of
eager). To capture the desired time-synchronous semantics in Rred

Orc, we restrict the
application of the tick rule by the condition that the configuration is not eager.

Tick : 〈f, clk : cm | r〉 → 〈f, clk : cm+1 | δ(r)〉 if eager(〈f, clk : cm | r〉)
= true

3.5 Correctness of the Semantics

In order for the rewriting semantics specifications described above to capture the
intended semantics of Orc, it must somehow correspond to the SOS specifications
of Figure 3. In this section, we present an equivalence theorem of which a detailed
discussion and a complete proof are given in [2]. The theorem entails that the
rewriting semantics of Orc given by Rred

Orc and the SOS-based rewriting semantics
Rsos

Orc developed in [1] are semantically equivalent, in the sense that an Orc program
behaves in exactly the same way in both semantic models. The correctness of Rred

Orc

against the synchronous SOS semantics of [22] then follows immediately from that
of Rsos

Orc with respect to the same SOS semantics, which was studied in [1].

Definition 3.3 In a configuration 〈f, (con : σ) | r〉, an occurrence of an expression
name E is bound in f if there exists a declaration for E in the context σ. Otherwise,
E is said to be free in f . Likewise, an occurrence of E is bound in σ if there exists
a declaration for E in σ, and is free in σ otherwise.

Definition 3.4 An Orc configuration 〈f, r〉 is well-formed if: (1) f does not con-
tain any of the auxiliary function symbols introduced in Section 3.2, such as sc↑,
pub, and γ; and (2) r contains at least the five fields listed in Section 3.1. Moreover,
a closed configuration is a well-formed configuration in which no expression name
appears free in f or σ, the context component of r.

Theorem 3.5 [2] For any closed configurations C and C′, the following equivalence
holds: C →Rsos

Orc
C′ ⇐⇒ C →Rred

Orc
C′.

Therefore, for any Orc program P , the state transition systems defined by Rsos
Orc

and Rred
Orc are strongly bisimilar.

3.6 Performance Comparison

Although the two theories Rsos
Orc and Rred

Orc are semantically equivalent, Rred
Orc is much

more efficiently executable and analyzable. To validate this claim, both theories
were implemented in Maude and a number of experiments were conducted using
some Orc programs that originally appeared in [22]. In all experiments, perfor-
mance was measured in terms of the time taken to perform a particular task. The
tasks were: (1) simulating four Orc programs using Maude’s rewrite command; (2)
exploring the state space of these four programs using Maude’s breadth-first search
command; and (3) model checking three instances of the dining philosophers prob-
lem using Maude’s LTL model checker 6 . The results of these experiments are

6 For the first two tasks, the clock was limited to ten clock ticks, and pseudo-random delays were assumed.
Since the model checking task did not require external communication, time in this case was limited to a

M. AlTurki, J. Meseguer / Electronic Notes in Theoretical Computer Science 200 (2008) 25–4136

dining philosophers

timed-mcall timeout priority parallel-or 2 3 4

Rsos
Orc rewrite 2,178 27 47 3,247 213 51,268 ∞

search ∞ 376 1,921 143,158

Rred
Orc rewrite 4 2 2 3 53 1,502 45,860

search 34,396 31 188 4,861

Table 1
A performance comparison of the rewriting semantics of Orc. A number in the table represents the CPU

time in milliseconds, as reported by Maude, to finish the corresponding task.

summarized in Table 1, which clearly shows that the reduction semantics can be
executed and analyzed much more efficiently than the SOS-based semantics.

4 Distributed Object-based Rewriting Orc Semantics

Many orchestration applications, especially relatively large ones, can be thought of
as consisting of multiple Orc subexpressions independently orchestrating different
but related tasks. For instance, in the dining philosophers implementation in Orc
[22] with n philosophers, there are n subexpressions running in parallel, one for
each philosopher. In more practical applications, such subexpressions normally run
on physically distributed autonomous agents spread across the web. Furthermore,
sites, whose responses were only simulated in the rewriting semantics developed
in the previous section to arrive at an executable specification, normally maintain
local states to support the services they provide, such as counter sites and channel
(buffer) sites. Therefore, it is natural to think of Orc expressions and sites as objects
in a distributed configuration. Expression objects are active objects (or actors in
the actor model) having a state and one or more threads of control, and are capable
of initiating (asynchronous) message exchange. Site objects are reactive objects
having internal states and are capable only of responding to incoming requests.
They can be thought of as actors that have a passive-reactive behavior.

The reduction semantics described in Section 3 is a key step towards the specifi-
cation of the object-based semantics of the Orc’s orchestration model. In addition,
within the Maude framework, the object-based semantics lends itself nicely to a
future (physically) distributed deployment using Maude’s socket programming ca-
pabilities. This leads to a formal analysis and verification environment that is
faithful to the distributed nature of Orc’s wide-area computations.

4.1 Distributed Orc Semantics

A distributed Orc configuration is modeled by a multiset of objects and messages.
There are three classes of objects, namely, expression, site, and clock objects. a clock
object is a simple object of class Clock, which maintains a single field, called clk,
representing the current clock time. An expression object is an object of class Expr
having three attributes: (i) exp, which holds an Orc expression to be computed;

single clock tick with no delays. All experiments were run on a 3.2GHz dual-core machine with 2GB of
memory using Maude 2.3.

M. AlTurki, J. Meseguer / Electronic Notes in Theoretical Computer Science 200 (2008) 25–41 37

(ii) con, which is the context where expression name declarations appear; and (iii)
hdl, which maintains a set of handle names that are currently being used by the
expression. A site object is one of class Site with the following attributes:

(i) name: the name of the site, such as if, rtimer, CNN, BBC, . . . etc.

(ii) op: the current operation being performed by the site. This attribute indicates
whether the site object is currently blocking or accepting incoming messages.
It also serves as a means to modularly specify a particular site definition.

(iii) state: the processing state of a site object. This field is abstractly defined as
a list of items whose concrete meaning depends on the particular site being
specified. Fundamental sites, such as if and rtimer, and other basic sites,
such as arithmetic functions, are stateless and thus make no use of this field.
However, more complex sites may require this attribute to maintain their state.

A message is either a site call message of the form M ← sc(O,C, h, m), with M

the name of the site being called, and O the object identifier of the caller expression
object, or a site return message of the form O ← sr(c, h,m), with O the identifier
of the expression object receiving the published value c.

The distributed semantics of an Orc expression object is essentially that of the
reduction semantics specification of Section 3, with the exception that messages
are now managed by the distributed Orc configuration. This distributed semantics
generalizes the reduction semantics to multiple Orc expressions, and provides an
explicit treatment of message exchange between expression and site objects. A
detailed discussion of this distributed semantics and its implementation in Maude
can be found in [2]. We illustrate through an application how Maude’s LTL model
checker can be used to verify properties of distributed Orc systems.

4.2 A Case Study: Managing an Online Auction

The distributed Orc auction program auction presented here was inspired by the
Orc auction example given in [22]. The program uses a few expression declarations
that we briefly describe first (a detailed discussion of the program and the following
analysis can be found in [2]). The two main declarations are PostingDecl and
BiddingDecl. PostingDecl defines an expression Posting(S) that gets items that are
available to be advertised from the seller site list S, which is given below 7 .

Posting(S) =def if (empty(S)) � let(0) | if (¬empty(S)) �
(S0(PostNext) > item > auction(post , item) � rtimer(item1 + 1)

� Posting(tail(S)))

An item is a tuple (id , t,m), with id the item’s identifier, t the duration of the
auction, and m the minimum bid. Once an item is posted, the expression waits for

7 Subscripts are used to denote zero-based indexing of elements in a list. For example, S0 is the first
element in S and item1 is the second element in item. Furthermore, the notation 	 is used for sequential
composition when no value passing occurs.

M. AlTurki, J. Meseguer / Electronic Notes in Theoretical Computer Science 200 (2008) 25–4138

the auction to end before proceeding to the next item. The declaration BiddingDecl
defines the bidding expression that manages the bidding process and announces
winning bidders.

Bidding(B) =def auction(getNext) > item > Bids(item0, item1, item2, B, 0) > w >

(if (w1 = 0) � Bidding(B) | if (w1
= 0) � w1(won, item0, w0))

B is a list of bidders and Bids is an expression, declared by BidsDecl shown below,
which, if successful, returns a pair (wbid ,wbidder) consisting of the winning bid and
the winning bidder name.

Bids(id , duration, bid , B,winner) =def if (duration = 0) � let(bid ,winner)

| if (duration
= 0) � Collect(nextBid , B, id , bid) > bidList >

MaxBid(bidList) > m > rtimer(1) � Bids(id , duration − 1, m0, B,m1)

The Bids expression collects bids in rounds, each lasting for one time unit. In each
round, the maximum bid is computed and published by the site MaxBid , and then
used as the minimum bid for the next round. The Collect expression (declared by
CollectDecl shown below) returns a list of bidding pairs of the form (bid , bidder).

Collect(m, B, id ,minBid) =def if (empty(B)) � let(nil) | if (¬empty(B)) �
(append(x, xs) where x :∈ B0(m, id ,minBid)

where xs :∈ Collect(m, tail(B), id ,minBid))

Beside the clock object and the fundamental site objects, the initial configura-
tion of auction used in this section contains two expression objects: the posting
expression object and the bidding expression object,

〈o1 : Expr | exp : Posting(seller0), con : PostingDecl , hdl : ∅〉
〈o2 : Expr |exp : Bidding(b0, b1, b2), con : BiddingDecl ,BidsDecl ,CollectDecl , hdl : ∅〉

along with six site objects: (1) a seller site object whose name is seller0; (2) three
bidder site objects (named b0, b1, and b2); (3) a site object for the auction site,
which manages the bidding process; and (4) a site object for the MaxBid site. In
auction, we assume that seller0 has two items t1 and t2 for sale and that bidders
follow different bidding strategies. For simplicity, we assume no communication
delays, and allow enough clock ticks for program completion.

We can specify some correctness properties of auction, and then verify them
using Maude’s LTL Model Checker. Four atomic predicates, which are parametric
to items, are used. hasbid(t) and sold(t) are self-explanatory. max (t) is true in a
state where t is sold to the highest bidder, while conflict(t) is true whenever t has
two or more winning bidders.

M. AlTurki, J. Meseguer / Electronic Notes in Theoretical Computer Science 200 (2008) 25–41 39

(i) An item with at least one bid is eventually sold: �
∧

i(hasbid(ti) → �sold(ti))
Maude> red modelCheck(init, commitAll) .
rewrites: 33366205 in 59315ms cpu (59332ms real) (562516 rewrites/second)
result Bool: true

(ii) An item is always sold at the maximum bid to the highest bidder:
�

∧
i(sold(ti) → max (ti))

Maude> red modelCheck(init, winAll) .
rewrites: 33739349 in 61027ms cpu (61024ms real) (552852 rewrites/second)
result Bool: true

(iii) An item cannot have two winners: ¬�
∨

i conflict(ti)
Maude> red modelCheck(init, uniqueWinnerAll) .
rewrites: 33290882 in 59742ms cpu (59739ms real) (557235 rewrites/second)
result Bool: true

5 Conclusion and Future Work

We have presented an efficient reduction semantics for Orc, shown how it captures
Orc’s synchronous real-time semantics, and established its semantic equivalence
with a previous SOS-like semantics. We have also further refined the reduction
semantics into a distributed object semantics and have shown how LTL properties
of Orc programs can be model checked using the distributed semantics. A natural
future extension of this work is the development of a provably correct distributed
implementation of Orc. The key idea is to shift the emphasis in the use of rewrit-
ing logic from executable specification to declarative distributed programming. In
particular, we expect to make heavy use of Maude’s support for sockets as external
objects [9] to develop such a distributed implementation.

Acknowledgement

Partially supported by ONR Grant N00014-02-1-0715, and by NSF Grants CNS-
05-24516 and CNS-07-16638.

References

[1] Musab AlTurki and José Meseguer. Real-time rewriting semantics of Orc. In PPDP ’07: Proceedings
of the 9th ACM SIGPLAN international symposium on Principles and practice of declarative
programming, pages 131–142, New York, NY, USA, 2007. ACM Press.

[2] Musab AlTurki and José Meseguer. Rewriting logic semantics of Orc. Technical Report UIUCDCS-R-
2007-2918, University of Illinois at Urbana Champaign, November 2007.

[3] J. C. M. Baeten and J. A. Bergstra. Real time process algebra. Formal Aspects of Computing, 3(2):142–
188, 1991.

[4] J. C. M. Baeten and Cornelis A. Middelburg. Process algebra with timing; Monographs in theoretical
computer science. Springer, Berlin; New York, 2002.

[5] Roberto Bruni, Hernán Melgratti, and Emilio Tuosto. Translating Orc features into petri nets and the
join calculus. In Mario Bravetti, Manuel Núñez, and Gianluigi Zavattaro, editors, Web Services and
Formal Methods, volume 4184 of Lecture Notes in Computer Science, pages 123–137. Springer, 2006.

[6] Roberto Bruni and José Meseguer. Semantic foundations for generalized rewrite theories. Theor.
Comput. Sci., 360(1-3):386–414, 2006.

M. AlTurki, J. Meseguer / Electronic Notes in Theoretical Computer Science 200 (2008) 25–4140

[7] Liang Chen. An interleaving model for real-time systems. In TVER ’92: Proceedings of the Second
International Symposium on Logical Foundations of Computer Science, pages 81–92, London, UK,
1992. Springer-Verlag.

[8] Shuo Chen, José Meseguer, Ralf Sasse, Helen J. Wang, and Yi-Min Wang. A systematic approach to
uncover security flaws in GUI logic. In IEEE Symposium on Security and Privacy, pages 71–85. IEEE
Computer Society, 2007.

[9] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-Oliet, José Meseguer,
and Carolyn Talcott. All About Maude - A High-Performance Logical Framework: How to Specify,
Program, and Verify Systems in Rewriting Logic (Lecture Notes in Computer Science). Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2007.

[10] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-Oliet, José Meseguer,
and Carolyn Talcott. Maude manual (version 2.3). January 2007. http://maude.cs.uiuc.edu/
maude2-manual/maude-manual.pdf.

[11] Steven Eker, Narciso Mart́ı-Oliet, José Meseguer, and Alberto Verdejo. Deduction, strategies, and
rewriting. Electron. Notes Theor. Comput. Sci., 174(11):3–25, 2007.

[12] Matthew Hennessy and Tim Regan. A process algebra for timed systems. Inf. Comput., 117(2):221–
239, 1995.

[13] Tony Hoare, Galen Menzel, and Jayadev Misra. A tree semantics of an orchestration language. In
Proceedings of the NATO Advanced Study Institute on Engineering, Theories of Software Intensive
Systems, Marktoberdorf, Germany, August 2004.

[14] David Kitchin, William R. Cook, and Jayadev Misra. A language for task orchestration and its semantic
properties. CONCUR 2006 –Concurrency Theory, pages 477–491, 2006.

[15] J. Meseguer and G. Roşu. Rewriting logic semantics: From language specifications to formal analysis
tools. In Proc. Intl. Joint Conf. on Automated Reasoning IJCAR’04, Cork, Ireland, July 2004, pages
1–44. Springer LNAI 3097, 2004.

[16] José Meseguer. Conditional rewriting logic as a unified model of concurrency. Theor. Comput. Sci.,
96(1):73–155, 1992.

[17] José Meseguer. A logical theory of concurrent objects and its realization in the Maude language. In
Gul Agha, Peter Wegner, and Akinori Yonezawa, editors, Research Directions in Concurrent Object-
Oriented Programming, pages 314–390. MIT Press, 1993.

[18] José Meseguer. Membership algebra as a logical framework for equational specification. In F. Parisi-
Presicce, editor, Proc. WADT’97, pages 18–61. Springer LNCS 1376, 1998.

[19] José Meseguer and Christiano Braga. Modular rewriting semantics of programming languages.
Algebraic Methodology and Software Technology, pages 364–378, 2004.

[20] José Meseguer and Grigore Rosu. The rewriting logic semantics project. Theor. Comput. Sci.,
373(3):213–237, 2007.

[21] Jayadev Misra. Computation orchestration: A basis for wide-area computing. In Manfred Broy, editor,
Proc. of the NATO Advanced Study Institute, Engineering Theories of Software Intensive Systems,
NATO ASI Series, Marktoberdorf, Germany, 2004.

[22] Jayadev Misra and William R. Cook. Computation orchestration: A basis for wide-area computing.
Journal of Software and Systems Modeling, May 2006.

[23] X. Nicollin and J. Sifakis. The algebra of timed processes ATP: Theory and application. Information
and Computation, 114(1):131–178, 1994.

[24] Peter Csaba Ölveczky and José Meseguer. Specification of real-time and hybrid systems in rewriting
logic. Theoretical Computer Science, 285:359–405, 2002.

[25] Sidney Rosario, David Kitchin, Albert Benveniste, William Cook, Stefan Haar, and Claude Jard. Event
structure semantics of Orc. In 4th International Workshop on Web Services and Formal Methods (WS-
FM 2007), Brisbane, Australia, October 2007.

[26] Steve Schneider, Jim Davies, D. M. Jackson, George M. Reed, Joy N. Reed, and A. W. Roscoe. Timed
CSP: Theory and practice. In Proceedings of the Real-Time: Theory in Practice, REX Workshop,
pages 640–675, London, UK, 1992. Springer-Verlag.

[27] Ian Wehrman, David Kitchin, William R. Cook, and Jayadev Misra. A timed semantics of Orc.
Theoretical Computer Science, July 2007. To appear (preliminary version in http://www.cs.utexas.
edu/users/wcook/Drafts/2007/TimedSemanticsDRAFT.pdf).

M. AlTurki, J. Meseguer / Electronic Notes in Theoretical Computer Science 200 (2008) 25–41 41

http://maude.cs.uiuc.edu/maude2-manual/maude-manual.pdf
http://maude.cs.uiuc.edu/maude2-manual/maude-manual.pdf
http://www.cs.utexas.edu/users/wcook/Drafts/2007/TimedSemanticsDRAFT.pdf
http://www.cs.utexas.edu/users/wcook/Drafts/2007/TimedSemanticsDRAFT.pdf

	Introduction
	Related Work and Preliminaries
	The Orc Programming Model
	Rewriting Logic and Maude

	Reduction Semantics of Orc
	Semantic Infrastructure
	Rewrite Rules and Equations
	Asynchronous versus Synchronous Execution Strategies
	Timed Semantics
	Correctness of the Semantics
	Performance Comparison

	Distributed Object-based Rewriting Orc Semantics
	Distributed Orc Semantics
	A Case Study: Managing an Online Auction

	Conclusion and Future Work
	References

