
Statistical Model Checking of RANDAO’s
Resilience to Pre-computed Reveal Strategies

Musab A. Alturki1,2 and Grigore Roşu3,1

1 Runtime Verification Inc., Urbana, IL 61801
2 King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia

musab.alturki@kfupm.edu.sa
3 University of Illinois at Urbana-Champaign, Urbana, IL 61801

grosu@illinois.edu

Abstract. RANDAO is a commit-reveal scheme for generating pseudo-
random numbers in a decentralized fashion. The scheme is used in emerg-
ing blockchain systems as it is widely believed to provide randomness
that is unpredictable and hard to manipulate by maliciously behaving
nodes. However, RANDAO may still be susceptible to look-ahead at-
tacks, in which an attacker (controlling a subset of nodes in the net-
work) may attempt to pre-compute the outcomes of (possibly many)
reveal strategies, and thus may bias the generated random number to
his advantage. In this work, we formally evaluate resilience of RANDAO
against such attacks. We first develop a probabilistic model in rewrit-
ing logic of RANDAO, and then apply statistical model checking and
quantitative verification algorithms (using Maude and PVeStA) to an-
alyze two different properties that provide different measures of bias that
the attacker could potentially achieve using pre-computed strategies. We
show through this analysis that unless the attacker is already controlling
a sizable percentage of nodes while aggressively attempting to maximize
control of the nodes selected to participate in the process, the expected
achievable bias is quite limited.

Keywords: RANDAO · Rewriting logic · Maude · Statistical Model
Checking · Blockchain

1 Introduction

Decentralized pseudo-random value generation is a process in which participants
in a network, who do not necessarily trust each other, collaborate to produce a
random value that is unpredictable to any individual participant. It is a core pro-
cess of many emerging distributed autonomous systems, most prominently proof-
of-stake (PoS) consensus protocols, which include the upcoming Ethereum 2.0
(a.k.a. Serenity) protocol [11, 8]. A commonly accepted implementation scheme
for decentralized random value generation is a commit-reveal scheme, known as
RANDAO (due to Youcai Qian [16]), in which participants first make commit-
ments by sharing hash values of seeds, and then, at a later stage, they reveal
their seeds, which can then be used for generating the random value. In a PoS

2 M. Alturki, and G. Roşu

protocol, and in particular in Serenity [11], the scheme is used repeatedly in a
sequence of rounds in such a way that the outcome of a round is used as a seed
for generating the random value of the following round. Moreover, the scheme is
usually coupled with a reward system that incentivizes successful participation
and discourages deviations from the protocol. Several other distributed protocols
have also adopted this scheme primarily for its simplicity and flexibility.

However, this approach may still be susceptible to look-ahead attacks, in
which a malicious participant may choose to refrain from revealing his seed
if skipping results in randomness that is more favorable to him. In general, a
powerful attacker may attempt to pre-compute the outcomes of (possibly many)
reveal strategies, which are sequences of reveal-or-skip decisions, and thus may
anticipate the effects of his contribution to the process and bias the generated
random number to his advantage.

While this potential vulnerability is known and has been pointed to in several
works in the literature (e.g. [7, 6, 4]), the extent to which it may be exploited by
an attacker and how effective the attack could be in an actual system, such as
a PoS system like Serenity, have not yet been thoroughly investigated, besides
the exploitability arguments made in [7] and [6], which were based on abstract
analytical models. While the high-level analysis given there is useful for gaining
a foundational understanding of the vulnerability and the potential of the at-
tack, a lower-level formalization that captures the interactions of the different
components of the RANDAO process and the environment could provide deeper
insights into how realizable the attack is in an actual system.

In this work, we develop a computational model of the RANDAO scheme
as a probabilisitic rewrite theory [12, 1] in rewriting logic [13] to formally evalu-
ate resilience of RANDAO to pre-computed reveal strategies. The model gives a
formal, yet natural, description of (possibly different designs of) the RANDAO
process and the environment. Furthermore, the model is both timed, capturing
timing of events in the process, and probabilistic, modeling randomized protocol
behaviors and environment uncertainties. Being executable, the model facilitates
automated formal analysis of quantitative properties, specified as real-valued for-
mulas in QuaTEx (Quantitative Temporal Expressions Logic) [1], through effi-
cient statistical model checking and quantitative analysis algorithms using both
Maude [9] (a high-performance rewriting system) and PVeStA [2] (a statisti-
cal verification tool that interfaces with Maude). Using the model, we analyze
two properties that provide different measures of bias that the attacker could
potentially achieve using pre-computed strategies: (1) the matching score, which
is the expected number of proposers that the attacker controls, and (2) the last-
word score, which is the length of the longest tail of the proposers list that the
attacker controls.

We show through this analysis that unless the attacker is already controlling
a sizable portion of validators and is aggressively attempting to maximize the
number of last compromised proposers in the proposers list, or what we call
the compromised tail of the list, the expected achievable bias of randomness of
the RANDAO scheme is quite limited. However, an aggressive attacker who can

Title Suppressed Due to Excessive Length 3

afford to make repeated skips for very extended periods of time (e.g. in thousands
of rounds), or an attacker who already controls a fairly large percentage (e.g.
more than 30%) of participants in the network will have higher chances of success.

The rest of the paper is organized as follows. In Section 2, we quickly review
rewriting logic and statistical model checking. In Section 3, we introduce in some
detail the RANDAO scheme. This is followed in Section 4 by a description of
our model of RANDAO in rewriting logic. Section 5 the analysis properties and
results. The paper concludes with a discussion of future work in Section 6.

2 Background

Rewriting logic [14] is a general logical and semantic framework in which systems
can be formally specified and analyzed. A unit of specification in rewriting logic
is a rewrite theory R, which formally describes a concurrent system including
its static structure and dynamic behavior. It is a tuple (Σ,E ∪A,R) consisting
of: (1) a membership equational logic (MEL) [15] signature Σ that declares the
kinds, sorts and operators to be used in the specification; (2) a set E of Σ-
sentences, which are universally quantified Horn clauses with atoms that are
either equations (t = t′) or memberships (t : s); (3) A a set of equational
axioms, such as commutativity, associativity and/or identity axioms; and (4)
a set R of rewrite rules t −→ t′ if C specifying the computational behavior
of the system (where C is a conjunction of equational or rewrite conditions).
Operationally, if there exists a substitution θ such that θ(t) matches a subterm
s in the state of the system, and θ(C) is satisfied, then s may rewrite to θ(t′).
While the MEL sub-theory (Σ,E ∪ A) specifies the user-defined syntax and
equational axioms defining the system’s state structure, a rewrite rule in R
specifies a parametric transition, where each instantiation of the rule’s variables
that satisfies its conditions yields an actual transition (See [5] for a detailed
account of generalized rewrite theories).

Probabilistic rewrite theories extend regular rewrite theories with probabilis-
tic rules [17, 1]. A probabilistic rule (t −→ t′ if C with probability π) specifies a
transition that can be taken with a probability that may depend on a probability
distribution function π parametrized by a t-matching substitution satisfying C.
Probabilistic rewrite theories unify many different probabilistic models and can
express systems involving both probabilistic and nondeterministic features.

Maude [9] is a high-performance rewriting logic implementation. An equa-
tional theory (Σ,E ∪ A) is specified in Maude as a functional module, which
may consist of sort and subsort declarations for defining type hierarchies, op-
erator declarations, and unconditional and conditional equations and member-
ships. Operator declarations specify the operator’s syntax (in mixfix notation),
the number and sorts of the arguments and the sort of its resulting expression.
Furthermore, equational attributes such as associativity and commutativity ax-
ioms may be specified in brackets after declaring the input and output sorts. A
rewrite theory is specified as a system module, which may additionally contain
rewrite rules declared with the rl keyword (crl for conditional rules).

4 M. Alturki, and G. Roşu

Furthermore, probabilistic rewrite theories, specified as system modules in
Maude [9], can be simulated by sampling from probability distributions. Using
PVeStA [2], randomized simulations generated in this fashion can be used to
statistically model check quantitative properties of the system. These properties
are specified in a rich, quantitative temporal logic, QuaTEx [1], in which real-
valued state and path functions are used instead of boolean state and path pred-
icates to quantitatively specify properties about probabilistic models. QuaTEx
supports parameterized recursive function declarations, a standard conditional
construct, and a next modal operator ©, allowing for an expressive language
for real-valued temporal properties (Example QuaTEx expressions appear in
Section 5). Given a QuaTEx path expression and a Maude module specifying
a probabilistic rewrite theory, statistical quantitative analysis is performed by
estimating the expected value of the path expression against computation paths
obtained by Monte Carlo simulations. More details can be found in [1].

3 The RANDAO Scheme

The RANDAO scheme [16] is a commit-reveal scheme consisting of two stages:
(1) the commit stage, in which a participant pi first commits to a seed si (by
announcing the hash of the seed hsi), and then (2) the reveal stage, in which the
participant pi reveals the seed si. The sequence of revealed seeds s0, s1, · · · , sn−1
(assuming n participants) are then used to compute a new seed s (e.g. by taking
the XOR of all si), which is then used to generate a random number.

In the context of the Serenity protocol [11], the RANDAO scheme proceeds
in rounds corresponding to epochs in the protocol. At the start of an epoch i,
the random number ri−1 generated in the previous round (in epoch i − 1) is
used for sampling from a large set of validators participating in the protocol an
ordered list of block proposers p0, p1, · · · pk−1, where k is the cycle length of the
protocol (a fixed number of time slots constituting one epoch in the protocol).
Each proposer pi is assigned the time slot i of the current round (epoch). During
time slot i, the proposer pi is expected to submit the pair (cpi

, spi
), with cpi

a commitment on a seed to be used for the next participation in the game (in
some future round when pi is selected again as a proposer), and spi the seed
to which pi had previously committed in the last participation in the game (or
when pi first joined the protocol’s validator set). The RANDAO contract keeps
track of successful reveals in the game, which are those reveals that arrive in
time and that pass the commitment verification step. Towards the end of an
epoch i, the RANDAO contract combines the revealed seeds in this round by
computing their XOR si, which is used as the seed for the next random number
ri+1 to be used in the next round i + 1. To discourage deviations from the
protocol and encourage proper participation, the RANDAO contract penalizes
proposers who did not successfully reveal (by discounting their Ether deposits)
and rewards those proposers who have been able to successfully reveal their seeds
(by distributing dividends in Ether).

Title Suppressed Due to Excessive Length 5

4 A Rewriting Model of RANDAO

We use rewriting logic [14], and its probabilistic extensions [12, 1], to build a
generic and executable model of the RANDAO scheme. The model is specified as
a probabilistic rewrite theory R = (ΣR, ER ∪AR, RR), implemented in Maude
as a system module. By utilizing different facilities provided by its underlying
formalism, the model R is both (purely) probabilistic, specifying randomized
behaviors and environment uncertainties, and real-time, capturing (dense) time
clocks and message transmission delays. Furthermore, the model is parametric to
a number of parameters, such as the attack probability, the size of the validator
set and the network latency, to enable capturing different attack scenarios.

In this section, we describe generally the most fundamental parts of the
model. A more detailed description of the model can be found in [3].

4.1 Protocol State Structure

The structure of the model, specified by the MEL sub-theory (ΣR, ER ∪ AR)
of R, is based on a representation of actors in rewriting logic, which builds on
its underlying object-based modeling facilities. In this model, the state of the
protocol is a configuration consisting of a multiset of actor objects and messages
in transit. Objects communicate asynchronously by message passing. An object
is a term of the form <name: O | A >, with O the actor object’s unique name
(of the sort ActorName) and A its set of attributes, constructed by an associative
and commutative comma operator , (with mt as its identity element). Each
attribute is a name-value pair of the form attr : value. A message destined
for object O with payload C is represented by a term of the form O <- C, where
the payload C is a term of the sort Content.

Objects The three most important objects in the model are: (1) the blockchain
object, (2) the RANDAO contract object, and (3) the attacker object.

The blockchain object. This object, identified by the actor name operator bc,
models abstractly the public data maintained in a blockchain:

1 <name: bc | vapproved: VHL , vapproved -size: N,

2 vpending: VHL ’, vpending -size: N’,

3 seed: S >

The object maintains a list of validator records of all approved and participating
validators in the system in an attribute vapproved, with its current length in
the vapproved-size attribute. As new validators arrive and request to join the
system, the blockchain object accumulates these incoming requests as a growing
list of validator records in its attribute vpending, along with its current size in
the attribute vpending-size. Finally, this object maintains the seed value that
was last computed by the previous round of the game in its seed attribute.

6 M. Alturki, and G. Roşu

The RANDAO object. This object, identified by the operator r, models a RAN-
DAO contract managing the RANDAO process:

1 <name: r | status: U, balance: N, precords: PL,

2 prop -size: M, prop -ilist: IL, pnext: I >

It maintains a status attribute, indicating its current state of processing, and
a balance attribute, keeping track of the total contract balance. Moreover, the
object manages the proposers list for the current round of the game using the
attributes prop-ilist, a list of indices identifying the proposers, and precords,
a list of proposer records of the form [v(I), B] with B a Boolean flag indicating
whether the proposer v(I) has successfully revealed. Additionally, the size of the
proposers list is stored in prop-size. Finally, the object also keeps track of the
next time slot (in the current round) to be processed in the attribute pnext.

The attacker object. The attacker is modeled by the attacker object, identified
by the operator a:

1 <name: a | vcomp: CVL , vcomp -ilist: IL, vcomp -size: N,

2 strategy: G >

The full list of the compromised validator indices is maintained by the attacker
object in the attribute vcomp-ilist. This list is always a sublist of the active
validators maintained by the blockchain object above. Its length is maintained
in the attribute vcomp-size. Since in every round of the game, a portion of
validators selected as proposers may be compromised, the attacker object creates
compromised validator records for all such validators to assign them roles for
the round and maintains these records in its attribute vcomp. If any one of these
compromised validators is at the head of the longest compromised tail of the
proposers list, the computed reveal strategy (whenever it becomes ready during
the current round) is recorded in the attribute strategy.

The Scheduler In addition to objects and messages, the state (configuration)
includes a scheduler, which is responsible for managing the time domain, modeled
by the real numbers, and the scheduling of message delivery. The scheduler is a
term of the form {T | L}, with T the current global clock value and L a time-
ordered list of scheduled messages, where each such message is of the form [T,M],
representing a message M scheduled for processing at time T. As time advances,
scheduled messages in L are delivered (in time-order) to their target objects, and
newly produced messages by objects are appropriately scheduled into L. The
scheduler is key in ensuring absence of any unquantified non-determinism in the
model, which is a necessary condition for soundness of statistical analysis [3].

4.2 Protocol Transitions

The protocol’s state transitions are modeled using the (possibly conditional
and/or probabilistic) rewrite rules RR of the rewrite theory R = (ΣR, ER ∪

Title Suppressed Due to Excessive Length 7

AR, RR). The rules specify: (1) the actions of the RANDAO contract, which are
advancing the time slot, advancing the round and processing validator reveals,
and (2) the behaviors of both honest and compromised validators. For space con-
sideration, we only list and describe the rule for advancing the time slot below,
while omitting some of the details. Complete descriptions of all the rules can be
found in the extended report [3].

The transition for advancing the time slot specifies the mechanism with which
the RANDAO contract object checks if a successful reveal was made by the
proposer assigned for the current time slot:

1 rl [RAdvanceSlot] :

2 <name: bc | vapproved -size: N, vpending -size: N’,

3 seed: S, AS >

4 <name: r | status: ready , precords: ([VID , B] ; CL),

5 prop -ilist: IL, pnext: K, AS’ >

6 { TG | SL } (RID <- nextSlot(L)) ...

7 =>

8 <name: bc | vapproved -size: N, vpending -size: N’,

9 seed: S, AS >

10 if L > #CYCLE -LENGTH then

11 <name: r | status: processing ,

12 precords: ([VID , B] ; CL),

13 prop -ilist:

14 sampleIndexList(N + N’, #CYCLE -LENGTH , S, nilIL),

15 pnext: 1, AS ’ >

16 { TG | SL } (RID <- nextRound)

17 else

18 if L == K then

19 <name: r | status: ready ,

20 precords: ([VID , B] ; CL),

21 prop -ilist: IL, pnext: K, AS’ >

22 else

23 <name: r | status: ready ,

24 precords: (CL ; [VID , false]),

25 prop -ilist: IL, pnext: s(K), AS’ >

26 fi

27 insert ({ TG | SL }, [TG + 1.0, (RID <- nextSlot(s(L)))])

28 fi

When the current time slot L is about to end, the message nextSlot(L) be-
comes ready for the RANDAO object to consume, which initiates the process of
advancing the state of the protocol to the next slot. There are three cases that
need to be considered depending on the value of L:

1. L > #CYCLE-LENGTH, meaning that the message’s time slot number exceeds
the number of slots in a round (slot numbering begins at 1), and thus, the
protocol has already processed all slots of the current round, and progress-
ing to the next slot would require advancing the the current round of the
game first. Therefore, the RANDAO contract object changes its status to

8 M. Alturki, and G. Roşu

processing and samples a new list of proposers for the next round using the
seed S that was computed in the current round. The object resets the time
slot count to 1 and emits a self-addressed, zero-delay nextRound message.

2. L == K, where K is the next-slot number stored in the RANDAO object,
which means that the slot number K was already advanced by successfully
processing a reveal some time earlier during this slot’s time window. In this
case, the state is not changed and a nextSlot(s(L)) message (with s the
successor function) is scheduled to repeat this process for the next time slot.

3. Otherwise, the slot number K stored in the object has not been advanced
before and, thus, either a reveal for the current time slot L was attempted
and failed or that a reveal was never received. In both cases, the RANDAO
object records that as a failure in the proposers record list, advances the slot
number K and schedules a nextSlot(s(L)) message in preparation for the
next time slot.

These cases are specified by the nested conditional structure shown in the rule.

5 Statistical Verification

We use the model R to formally and quantitatively evaluate how much an at-
tacker can bias randomness of the RANDAO process assuming various attacker
models and protocol parameters. In the analysis presented below, we assume a
95% confidence interval with size at most 0.02. We also assume no message drops
and random message transmission delays in the range [0.0, 0.1] time units (so
reveals, if made, are guaranteed to arrive on time).

5.1 Matching Score (MS)

The Matching score (MS) is the number of attacker-controlled validators selected
as proposers in a round of the RANDAO process. The baseline value for MS
(assuming no attack) is given by the expectation of a binomial random variable
X with success probability p (the probability of a validator being compromised)
in k repeated trials (k is the length of the proposers list), which is:

EX[X] = kp (1)

As a temporal formula in QuaTEx, the property MS is expressed as:

ms(t) = if time() > t then countCompromised()

else ©ms(t) fi ;

eval E[ms(t0)]

(2)

ms(t) is a recursively defined path expression that uses two state functions:
(1) time(), which evaluates to the time value of the current state of the protocol
(given by the scheduler object), and (2) countCompromised(), which evaluates

Title Suppressed Due to Excessive Length 9

200 400 600 800 1,000

0.5

1

1.5

2

2.5

3

3.5

4

Time Slots

E
x
p

ec
te

d
N

u
m

b
er

o
f

P
ro

p
o
se

rs

p = 0.1
p = 0.2
p = 0.3

(a) MS (10x500)

200 400 600 800 1,000

0.5

1

1.5

2

2.5

3

3.5

4

Time Slots

E
x
p

ec
te

d
N

u
m

b
er

o
f

P
ro

p
o
se

rs

p = 0.1
p = 0.2
p = 0.3

(b) MS (10x1000)

Fig. 1. The expected number of attacker-controlled proposers in the proposers list
against execution time in time slots, assuming the attacker is attempting to maximize
the number of compromised proposers. The dashed lines represent the base values
(with no active attack) computed using Equation (1). The shaded areas visualize the
expected bias achievable by the attacker for the three different attack probabilities
plotted. We assume a proposers list of size 10, and a validator set of size (a) 10 × 500
and (b) 10 × 1000.

to the number of compromised proposers in the current state of the RANDAO
object. Therefore, given an execution path, the path expression ms(t) evalu-
ates to countCompromised() in the current state if the protocol run is complete
(reached the time limit); otherwise, it returns the result of evaluating itself in
the next state, denoted by the next-state temporal operator ©. The number of
compromised proposers that an attacker achieves (on average) within the time
limit specified can be approximated by estimating the expected value of the
formula over random runs of the protocol, denoted by the query eval E[ms(t0)].

The analysis results for MS are plotted in the charts of Figure 1. We use
the notation a × b to denote the fact that the length of the proposers list
(CYCLE-LENGTH) is a and that there are a total of a × b participating valida-
tors in the configuration4. The dashed lines in the charts represent the base
values (with no active attack) computed using Equation (1) for different attack
probabilities p, while the plotted data points are the model’s estimates.

As the charts show, the attacker can reliably but minimally bias randomness
with this strategy. This, however, assumes that the attacker is able to afford all
the skips that will have to be made in the process, since only after about 80
rounds or so, the attacker is able to gain an advantage of about 20% (over the

4 The specific values for a and b used in this section and Section 5.2 are chosen so that
the total size of the validator set a · b is large enough relative to the length of the
proposers list a so that the probability of picking a compromised proposer stays the
same (recall that the attack probability is fixed), while not too large to allow efficient
analysis. This has the important consequence that the analysis results obtained are
representative of actual setups (where the set of validators is much larger than that
of the proposers), regardless of the exact proportion of proposers to validators.

10 M. Alturki, and G. Roşu

baseline). Nevertheless, an attacker that already controls a significant portion of
the validators can capitalize on that to speed up his gains, as can be seen from
the p = 0.3 attacker at around 100 rounds, compared with the weaker attackers.
Furthermore, by comparing the charts in Figure 1, we note that results obtained
for different proportions of proposers to validators are generally similar.

5.2 Last-Word Score (LWS)

This is the length of the longest attacker-controlled tail of the proposers list in a
round of the RANDAO process. We first compute a baseline value for LWS (as-
suming no attack). Let a be the event of picking an attacker-controlled validator,
which has probability p, and b the event of picking an honest validator b, having
probability (1 − p). Let the length of the proposers list be k. A compromised
tail in the proposers list corresponds to either a sequence of events a of length
j < k followed immediately by exactly one occurrence of event b, or a sequence
of events a of length exactly k (the whole list is controlled by the attacker).
Therefore, letting X be a random variable corresponding to the length of the
longest compromised tail, we have:

Pr[X = i] =

{
pi(1− p) i < k

pi i = k

Therefore, the expected value of X is

EX[X] =

k−1∑
i=0

i · pi(1− p) + k · pk (3)

We then specify the property LWS using the following formula:

lws(t) = if time() > t then countCompromisedTail()

else © lws(t) fi ;

eval E[lws(t0)]

(4)

The formula uses the state function countCompromisedTail(), which counts the
number of proposers in the longest compromised tail in the proposers list of the
current state of the RANDAO object. As before, estimating the expectation ex-
pression E[lws(t0)] gives an approximation of the expected length of the longest
compromised tail that an attacker can achieve within the specified time limit.

The results are plotted in the charts of Figure 2. As Figure 2 shows, maximiz-
ing the length of the compromised tail can result in a steady and reliable effect
on the proposers list. As the attack probability increases, the bias achieved can
be greater within shorter periods of time. For example, at around 60 rounds, the
bias achieved by a 0.1 attacker is negligible, while a 0.2 attacker is expected to
achieve 20% gains over the baseline (at around 0.32 compared with 0.25), and a
0.3 attacker achieves 60% gains (at around 0.7 compared with 0.43). Neverthe-
less, even at high attack rates, the charts do not show strong increasing trends,
suggesting that any gains more significant than those would require applying
reveal strategies for very extended periods of time.

Title Suppressed Due to Excessive Length 11

200 400 600 800 1,000

0.5

1

1.5

2

Time Slots

E
x
p

ec
te

d
N

u
m

b
er

o
f

P
ro

p
o
se

rs

p = 0.1
p = 0.2
p = 0.3

(a) LWS (10x500)

200 400 600 800 1,000

0.5

1

1.5

2

Time Slots

E
x
p

ec
te

d
N

u
m

b
er

o
f

P
ro

p
o
se

rs

p = 0.1
p = 0.2
p = 0.3

(b) LWS (10x1000)

Fig. 2. The expected number of attacker-controlled proposers in the proposers list
against execution time in time slots, assuming the attacker is attempting to maximize
the length of the compromised tail. The dashed lines represent the base values (with no
active attack) computed using Equation (3). The shaded areas visualize the expected
bias achievable by the attacker for the three different attack probabilities plotted. We
assume a proposers list of size 10, and a validator set of size (a) 10 × 500 and (b)
10 × 1000.

6 Conclusion

We presented an executable formalization of the commit-reveal RANDAO scheme
as a probabilistic rewrite theory in rewriting logic. Through its specification
in Maude, we used the model to analyze resilience of RANDAO against pre-
computed reveal strategies by defining two quantitative measures of achievable
bias: the matching score (MS) and the last-word score (LWS), specified as tem-
poral properties in QuaTEx and analyzed using statistical model checking and
quantitative analysis with PVeStA. Further analysis could consider other sce-
narios with dynamic validator sets, unreliable communication media and ex-
tended network latency. Furthermore, the analysis presented does not explicitly
quantify the costs to the attacker, which can be an important economic defense
against mounting these reveal strategies. An extension of the model could keep
track of the number of skips, or specify a limit on these skips, so that the success
of an attack strategy can be made relative to the cost of executing it. Finally,
a holistic approach to analyzing quantitative properties of Serenity looking into
availability and attack resilience properties makes for an interesting longer-term
research direction.

Acknowledgements. We thank Danny Ryan and Justin Drake from the Ethereum
Foundation for their very helpful comments. This work was performed under the
first Ethereum Foundation security grant “Casper formal verification”[10].

12 M. Alturki, and G. Roşu

References

1. Agha, G., Meseguer, J., Sen, K.: PMaude: Rewrite-based specification language
for probabilistic object systems. Electronic Notes in Theoretical Computer Science
153(2), 213–239 (2006)

2. Alturki, M.A., Meseguer, J.: PVeStA: A parallel statistical model checking and
quantitative analysis tool. In: Corradini, A., Klin, B., Ĉırstea, C. (eds.) Algebra
and Coalgebra in Computer Science, Lecture Notes in Computer Science, vol. 6859,
pp. 386–392. Springer Berlin / Heidelberg (2011)

3. Alturki, M.A., Roşu, G.: Statistical model checking of randao’s resilience against
pre-computed reveal strategies. Tech. rep., The University of Illinois at Urbana-
Champaign, http://hdl.handle.net/2142/102076 (November 2018)

4. Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In: Pro-
ceedings of Crypto 2018. pp. 757–788 (2018)

5. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories.
Theor. Comput. Sci. 360(1-3), 386–414 (2006)

6. Buterin, V.: RANDAO Beacon exploitability analysis, round 2 (November 2018),
https://ethresear.ch/t/randao-beacon-exploitability-analysis-round-2/1980

7. Buterin, V.: RNG exploitability analysis assuming pure RANDAO-based
main chain (November 2018), https://ethresear.ch/t/rng-exploitability-analysis-
assuming-pure-randao-based-main-chain/1825

8. Buterin, V.: Validator ordering and randomness in PoS (November 2018),
https://vitalik.ca/files/randomness.html

9. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework, Lecture Notes in
Computer Science, vol. 4350. Springer-Verlag, Secaucus, NJ, USA (2007)

10. Ethereum Foundation: Announcing beneficiaries of the Ethereum Foun-
dation grants (11 2018), https://blog.ethereum.org/2018/03/07/announcing-
beneficiaries-ethereum-foundation-grants

11. Ethereum Foundation: Ethereum 2.0 spec – Casper and Sharding (11 2018),
https://github.com/ethereum/eth2.0-specs/blob/master/specs/beacon-chain.md

12. Kumar, N., Sen, K., Meseguer, J., Agha, G.: A rewriting based model for prob-
abilistic distributed object systems. In: Proc. of FMOODS ’03. Lecture Notes in
Computer Science, vol. 2884, pp. 32–46. Springer (2003)

13. Meseguer, J.: Rewriting as a unified model of concurrency. In: Proceedings of the
Concur’90 Conference, Amsterdam, August 1990. Lecture Notes in Computer Sci-
ence, vol. 458, pp. 384–400. Springer (1990)

14. Meseguer, J.: Conditional rewriting logic as a unified model
of concurrency. Theor. Comput. Sci. 96(1), 73–155 (1992).
https://doi.org/http://dx.doi.org/10.1016/0304-3975(92)90182-F

15. Meseguer, J.: Membership algebra as a logical framework for equational specifi-
cation. In: Parisi-Presicce, F. (ed.) Proc. WADT’97. Lecture Notes in Computer
Science, vol. 1376, pp. 18–61. Springer (1998)

16. Qian, Y.: RANDAO: A DAO working as RNG of Ethereum (November 2018),
https://github.com/randao/randao/

17. Sen, K., Kumar, N., Meseguer, J., Agha, G.: Probabilistic rewrite theories: Unifying
models, logics and tools. Tech. Rep. UIUCDCS-R-2003-2347, University of Illinois
at Urbana Champaign (May 2003)

