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Design patterns are generic solutions to common programming problems. Design pat-
terns represent a typical example of design reuse. However, implementing design patterns
can lead to several problems, such as programming overhead and traceability. Existing
research introduced several approaches to alleviate the implementation issues of design
patterns. Nevertheless, existing approaches pose different implementation restrictions
and require programmers to be aware of how design patterns should be implemented.
Such approaches make the source code more prone to faults and defects. In addition,
existing design pattern implementation approaches limit programmers to apply specific
scenarios of design patterns (e.g., class-level), while other approaches require scattering
implementation code snippets throughout the program. Such restrictions negatively im-
pact understanding, tracing, or reusing design patterns. In this paper, we propose a novel
approach to support the implementation of software design patterns as an extensible Java
compiler. Our approach allows developers to use concise, easy-to-use language constructs
to apply design patterns in their code. In addition, our approach allows the application of
design patterns in different scenarios. We illustrate our approach using three commonly
used design patterns, namely Singleton, Observer, and Decorator. We show, through
illustrative examples, how our design pattern constructs can significantly simplify im-
plementing design patterns in a flexible, reusable, and traceable manner. Moreover, our
design pattern constructs allow class-level and instance-level implementations of design
patterns.

Keywords: Design patterns; singleton; observer; decorator; aspect-oriented programming;
extensible compiler; Polyglot; abc.

1. Introduction

Object-oriented (OO) design patterns [1] are reusable solutions that restructure OO
programs in a well-organized and reusable design. Design patterns were originally
implemented using OO features, such as polymorphism and inheritance [2]. After the
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emergence of aspect-oriented (AO) programming languages, researchers started to
employ AO constructs to make the implementation more reusable and modular [3].
There are three categories of design patterns: creational, structural, and behavioral.

Despite the wide range of applications of design patterns, the manual implemen-
tation of design patterns may lead to several problems. For example, design pattern
implementation may cause programming efficiency, traceability, and code reusabil-
ity problems [4]. Programmers may need to write various classes and methods to
achieve a simple behavior of a design pattern. Such a way leads to a sizable program-
ming overhead, a scattering of actions everywhere in the program, and a reduction
in program understandability. Although design patterns make the design reusable,
the code (or at least part of the code) used to implement them cannot be reused
later. Complex design patterns are implemented differently from one approach to
another, such as Observer and Decorator. The implementation of simple design
patterns, such as Singleton and Facade, only varies slightly from prior approaches.

Mayvan et al. [5] conducted a systematic study on research directions of de-
sign patterns. Previous approaches to implement design patterns make the source
code more prone to faults and defects [6, 7, 8, 9]. In addition, existing design pattern
implementation approaches limit programmers to apply specific scenarios of design
patterns (e.g., class-level), while other approaches require scattering implementation
code snippets throughout the program. Such restrictions negatively impact under-
standing, tracing, or reusing design patterns [10, 11]. Despite the practical usage
and development of design patterns, research has paid little attention to supporting
multiple implementation scenarios of design patterns while maintaining a reusable
code. For example, the Observer design pattern has been implemented in the lit-
erature using only one scenario (i.e., a single subject with multiple observers). In
such a scenario, the association of observers to subjects is subject-driven. For exam-
ple, Observer is implemented using the Line, Point and Screen example provided
by [3, 12], in which a single subject has a multiple of observers. However, this ob-
serving example has instead multiple subjects (i.e., Lines and Points) observed by
a single observer (i.e., Screen). Moreover, conventional approaches employ an indi-
rect way to implement design patterns. In other words, programmers in conventional
approaches do not deal with a design pattern as a recognizable unit in programs.
Instead, programmers may be required to manually implement, or at least to be
aware of, certain design pattern protocols and apply them to every pattern instance.
Such a way of protocol implementation may lead to increased dependencies within
programs, which makes the code error-prone.

In this paper, we propose an extensible compiler that makes the implementa-
tion of design patterns simpler, more intuitive, and easier to apply (patented in
[13, 14, 15]). We build an extensible compiler that implements our approach. Our
approach significantly simplifies the application of design patterns and makes it
more explicit. Our approach promotes code correctness by reducing the chances of
making programming errors in both the implementation of a design pattern or the
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code using it. Our approach can result in increased productivity, enhanced modu-
larity, and reduced dependencies between modules. We implement our approach as
an extensible Java compiler using abc (AspectBench Compiler) [16] with the Poly-

glot frontend [17]. To demonstrate our approach using three commonly used design
patterns, namely Singleton (a creational design pattern), Observer (a behavioral
design pattern), and Decorator (a structural design pattern). The selected design
patterns convey various concerns that have been addressed in the literature. Our
approach supports two levels of application of design patterns: the class-level and
the instance-level. We compare our approach with a baseline approach proposed by
Hannemann and Kiczales [3], which uses AspectJ constructs. Our approach outper-
forms the baseline approach in terms of lines of code, reduced dependencies, reduced
implementation overhead, and supporting instance-level implementations.

An application of the approach proposed in this paper to the Observe design
pattern was previously published. In this paper:

• We present the design of our extensible compiler and the required steps
required to implement new design patterns as language constructs.

• We present an application of the proposed approach to the Singleton and
Decorator design patterns, in addition to the Observer design pattern that
was presented in our previous work.

The rest of this paper is organized as follows. Section 2 presents the design of
our approach. Sections 3, 4, and 5 present the implementation of the Singleton,
the Observer, and the Decorator design patterns, respectively, using our proposed
approach. Section 6 discusses the prospective features of our approach. Section 7
presents the related work in the literature. Finally, Section 8 concludes the work
and suggests possible future work.

2. The Proposed Approach
We propose an approach to implement design patterns as an extensible compiler.
Our approach aims to reduce the programming overhead of design patterns and to
improve the traceability and readability of design patterns. To this end, we develop
a set of language constructs that allow programmers to apply design patterns easily.
For each language construct, we define keywords, syntax, and semantics. Then, we
develop our language constructs as a Java compiler extension using the abc compiler.
In this section, we present the design of our approach.

2.1. Design principles
When we design our design pattern constructs using our proposed extensible com-
piler, we define a set of design principles as follows:

• Flexibility: our approach encourages building parametric constructs to
allow the implementation of different scenarios of design patterns. For ex-
ample, constructs can be designed to support class-level and instance-level
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Fig. 1. Our methodology for extending the compiler

application of a certain design pattern. In addition, a design pattern con-
struct should be designed to accept passing parameters by programmers,
such as the names of specific classes, attributes, or methods.

• Ease-of-use: our approach enables developers to build expressive con-
structs that precisely capture the objective of design patterns in an intuitive
manner.

• Modularity: our approach enables developers to build modular constructs
that do not rely on other dependencies. For example, to apply a certain
design pattern, programmers are not required to use other libraries or im-
plementations of that design pattern, since everything is inclusive in the
design pattern construct.

2.2. Methodology of Extending the Compiler

Fig. 1 depicts the methodology used in our approach to develop design pattern
constructs. To develop a language construct for a certain design pattern, devel-
opers need to design appropriate (a) keyword(s), (b) syntax, (c) Abstract Syntax
Tree (AST) node(s), (d) type system, (e) semantics, and (f) compiler passes. This
methodology can be followed to design language constructs for any design patterns.
In this paper, we describe each step in detail using the Singleton, Observer, and
Decorator design patterns.

2.2.1. Identification of Keywords:

We define the keywords we use in our proposed design pattern constructs. We extend
the lexer of the base Java compiler to include all our desired keywords. We extend
the compiler’s lexer in two steps. First, we create a list of tokens to represent our
desired keywords as grammar terminals, as follows:

terminal Token SINGLETON, INSTANTIATE, AS,
LET, OBSERVE, EXEC,
DECORATE, WITH, TO;

Second, we extend the compiler’s lexer by defining appropriate keywords and
linking such keywords to the grammar tokens.

2.2.2. Extending the Parser and Grammar:

A grammar or syntax contains a set of formal rules that define how to construct
new expressions of the language from a set of symbols. There are formal ways to
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describe syntax in programming languages, such as Context-free grammar (CFG),
Backus-Naur form (BNF), and extended BNF (EBNF) [18]. In our extensible com-
piler, considering that we use the abc extensible compiler with the Polyglot fron-
tend, we extend the Polyglot Parser Generator (PPG). Grammar rules in PPG
are represented using EBNF. In our extensible compiler, we extend the compiler’s
PPG grammar with new grammar rules that define how our design pattern con-
structs should be used by programmers. We make the syntax of our design pattern
constructs simple but expressive and flexible to support different implementation
scenarios. We extend Java grammar rules by adding our design pattern constructs
as follows:

extend class_declaration ::= <singleton_decl>;
extend statement_without_trailing_substatement ::=

<instantiate_stmt>
| <let_observe_stmt>
| <decorate_with_stmt>;

Each grammar rule is then linked with a certain AST Node in our extended
Node Factory.

2.2.3. Constructing the Node Factory and AST:

The Node Factory of abc extends the Polyglot’s Node Factory with AspectJ nodes.
We extend the abc’s Node Factory with nodes that represent the components of our
design pattern constructs. Each node in the Node Factory is responsible for accept-
ing the parameters of a design pattern construct and creating the corresponding
AST.

2.2.4. Specifying the Type System:

We define the type system of our constructs by extending the abc’s type system. Our
types are generated automatically during the type building pass and then translated
into appropriate base types in the following compiler pass.

2.2.5. Semantics:

We define the semantics that corresponds to each of our constructs, in which we
specify how our constructs are transformed into AspectJ constructs. The AspectJ
constructs are then transformed into native Java constructs.

2.2.6. Embedding Our Compiler Passes:

Compiler passes are a sequence of jobs that build, check, and transform the AST. We
extend the abc’s compiler passes the same way abc extends the polyglot’s compiler
passes for Java. Each compiler pass is associated with a compiler visit that runs
whenever a compiler pass is reached.



6 Ghaleb et al.

3. The Singleton Design Pattern

Singleton is a creational design pattern that allows classes to have only a single
instance. All objects instantiated from a Singleton class refer to the same class
instance. This design pattern is preferable when a system needs exactly one instance
to maintain all required actions. Singleton contains a private instance and a private

constructor. The constructor is declared private to prevent the instantiation of other
class instances. In addition, Singleton maintains a public method that returns a
single class instance.

3.1. Syntax of the Singleton construct

Our Singleton construct allows programmers to simply write the ‘singleton’ mod-
ifier in the class declaration. To obtain a single instance of a Singleton class, pro-
grammers can use our ‘instantiate’ keyword. Our syntax for the Singleton construct
is as follows:

<singleton_decl> ::= [<modifiers>] "singleton" "class" <class_id> ["extends" <super_class>]
["implements" <interfaces_list>] <class_body>

<instantiate_stmt> ::= "instantiate" <class_id> "as" <var_decls>;

3.2. Applying the Singleton construct

The following code snippet shows how to use our Singleton construct. The class
Sing has the ‘singleton’ modifier, which restricts it to have only one instance. To
obtain a reference to that instance, we use the ‘instantiate’ statement that gets a
copy of the single instance of Sing and assigns it to the provided objects.

public singleton class Sing
{

instantiate Sing as s1;
public static void main(String[] args)
{

instantiate Sing as s2, s3;
}

}

3.3. Semantics of the Singleton construct

The compiler parses ‘singleton’ class declaration and the ‘instantiate’ statement
and then matches them with the extended compiler syntax. If the code complies
with our extended syntax, the compiler proceeds to the next compiler pass. Other-
wise, the compiler complains and produces appropriate error messages. We maintain
proper variable scoping for ‘instantiate’ statements to make sure that the Single-
ton class used is within the scope and could be accessed. In addition, we define
type checking compiler pass to verify whether the ‘singleton’ modifier is only used
for class declarations. Moreover, we make sure that ‘instantiate’ statements are



An Extensible Compiler for Implementing Design Patterns as Constructs 7

used with class types declared with the ‘singleton’ modifier. Finally, if all semantic
checks pass, the compiler transforms the Singleton AST nodes to proper AspectJ
nodes, which in turn are transformed into Java AST nodes, as shown in Table 1.

Table 1. Auto-Generated Code for the Singleton design pattern

1 public class Sing{
2 private static Sing singleInstance = new Sing();
3 private Sing(){}
4 public static Sing getInstance(){
5 return singleInstance;
6 }
7 public static void main(String[] args){
8 Sing s1 = Sing.getInstance();
9 Sing s2 = Sing.getInstance();

10 Sing s3 = Sing.getInstance();
11 }
12 }

Programmers are unaware of this code transformation, since it is performed in
the compiler back-end before producing the program byte code. Hence, our gener-
ated code is considered error-free and semantically correct.

4. The Observer Design Pattern

Observer is a behavioral design pattern that allows monitoring changes in some
components of the program, called subjects, to notify other parts of the program,
called observers. Observer consists of two main components: subjects and observers.
In general, the Observer pattern may define a many-to-many dependency between
subjects and observers, in which changes in the states of subjects cause all their
respective dependents (i.e., observers) to be notified and updated automatically.
However, the conventional implementation of the Observer design has two problems:

• Observer maintains a set of observers to notify whenever a state change
occurs (i.e., one subject - many observers) [2]. Such a case is limited to one
scenario in which the association of observers to subjects is made on the
basis of subjects. Therefore, observing a list of subjects by a single observer
requires each of these subjects to utilize an individual observing protocol
with only one observer in its list. A better alternative to implement such a
scenario would be to have another observing protocol that can associate a
list of subjects to any particular observer (i.e., an observer-oriented proto-
col).

• In the instance-level application, every instance of the Observer class has to
explicitly be assigned to the observed subject. Using a class-level association
of observers to subjects would rather solve such limitation. The class-level

association allows a subject to be observed by a class, and then all instances
of that class are implicitly assigned to the list of observers of that subject.
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We provide more details about the possible application scenarios of the Ob-
server design pattern in [19]. Hannemann and Kiczales [3] proposed an AspectJ
implementation of the Observer design pattern in comparison with the native Java
implementation. Their implementation was based on AspectJ constructs that im-
prove modularity using aspect-oriented crosscutting facilities [20, 21]. In our exten-
sible compiler, we use the AspectJ implementation proposed by Hannemann and
Kiczales as a back-end implementation of our proposed constructs.

4.1. Syntax

The Observer design pattern construct is designed to be as abstract and modular as
it could possibly be while maintaining high accessibility to programmers. Moreover,
the construct allows applying all possible scenarios of the Observer design pattern
expressively with the least amount of code. Its syntax is defined using the following
EBNF notation:

<LetObserve>::= "let" <annotated_id_list>
"observe" <extended_id_list>
["exec" <method_invocation>] ";"

The Observer construct consists of three parts: (1) a list of one or more ob-
servers specified by a comma-separated list of class and/or object identifiers given by
<annotated_id_list>; (2) a list of one or more subjects given by <extended_id_list>

specified by a comma-separated list of any combination of class and object identi-
fiers and attribute names or even the wildcard (*) to refer to all attributes within
the subject to be observed; and finally (3) a single optional notification method
given by the <method_invocation> non-terminal. Each of the two non-terminals
<annotated_id_list> and <extended_id_list> has its own production rules defined
in our extension (as shown below). The <method_invocation> and <name> non-
terminals are already defined in the Java 1.2 parser for CUPa employed by abc.
The production rules that define the non-terminal <annotated_id_list> are given
as follows:

<annotated_id_list>::= <id> {"," <id>}
<id>::= ("class" <name> | <name>)

The class keyword is used to distinguish between class and object identifiers (espe-
cially when declared with the same names). The non-terminal <extended_id_list>
defines an extension to the non-terminal <id>. This extension allows programmers
to assign subject names, determine certain attributes of them to observe, or use the
wildcard (*) to refer to all attributes within a subject to be observed, as follows:

<extended_id_list>::= <ext_id> {"," <ext_id>}
<ext_id>::= <id> ["(" ("*" | <attrib_list>) ")"]
<attrib_list>::= <name> {"," <name>}

ahttps://github.com/Sable/abc/blob/master/aop/abc/src/abc/aspectj/parse/java12.cup
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As an example statement that can be generated by this syntax, the following
statement:

let screen1, class Log observe line1(length), class Point(*);

sets up an object screen1 and a class Log as observers for changes in length attribute
of object line1, and any change to the state of any object of the Point class.
From now on, we refer to such statements that can be generated by this syntax as
‘let� observe� exec’ statements.

In general, the Observer construct supports the application of all the class-level

and instance-level observing scenarios, namely one-to-one, one-to-many, many-to-

one, and many-to-many [19]. Still, implementing a mixture of instance- and class-

level observing may be specified using multiple ‘let� observe� exec’ statements.

4.2. Application

To show the implementation of the Observer construct and how it can be applied,
we define three Java classes and several instances of them in Table 2: Line and
Point as subjects while Screen as an observer. In the Application class, we create
some instances of these classes to utilize them in the instance-level application of
the construct. Some scenarios of the Observer design pattern require all instances
of a class to observe subjects (i.e., class-level observing), while some others need
every instance to have its own observing logic (i.e., instance-level observing). The
Observer construct provides both class- and instance-level observing. The general
structure of the Observer construct is as follows: observers (classes and instances)
are placed after the let keyword, subjects (classes and instances) after the observe

keyword, and, optionally, the notification method after the exec keyword.

• Class-level Observing: The class-level observing can be applied as fol-
lows:

let class Screen observe class Line, class Point;

In the above observing form, programmers are able to indicate that one
class is observing a subject class or a set of subject classes. Consequently,
all instances of the observing class are notified whenever an instance of
the subject(s) has its state changed. This application shows a case of the
class-level version of Multiple Subjects - Multiple Observers scenario that
is applied using only one statement.

• Instance-level Observing: The observing logic in the instance-level ver-
sion of the Observer design pattern is accomplished instance-wise. This
means that each constructed object of the observing class may observe var-
ious subjects with a different number of attributes of each subject. One
form of this observing is to observe a single attribute of a single subject, as
follows:

let screen1 observe line(length) exec resize(length);
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Table 2. Four Java classes: two subjects, an observer, and an application

First Subject Class Second Subject Class
class Line {

Color color;
int length;
void setLength(int len){

this.length = len;
}

void setColor(Color c){
this.color = c;

}
}

class Point {
int x, y;
void setPos(int x, int y){

this.x = x;
this.y = y;

}
}
//
//
//

Observer Class
class Screen {

public void resize(int len){
System.out.println("Resizing with the new length: " + len);

}
public void display(String str){

System.out.println(str);
}

}

Application
Line line = new Line();
Point point = new Point();
Screen screen1, screen2, screen3 = new Screen();

This case refers to the Single Subject - Single Observer scenario in which
the programmer has to specify the observing instance, the subject, and the
notification method that receives the change of the state of the specified
attribute of the subject and send it directly to the corresponding observer.
Another form is to observe multiple attributes of a single subject by one
observing instance. This form represents the Multiple Subjects - Single Ob-

server scenario with the case of observing many attributes of a subject in
one statement, as shown in the following application:

let screen2 observe line(color,length) exec display;

The restriction of this application is that the programmer has to de-
fine only one notification method (with a String parameter) to refresh the
observing instance with the state changes of all attributes of the subject.
If the programmer does not specify a notification method, the compiler is
built to assume that there exists a method called ‘display’ in the observing
class for that purpose.

The last form is to observe multiple subjects with all their attributes
using one statement as shown below. This form also represents the Multiple

Subjects - Single Observer scenario but now with the case of having many
subjects with either single or multiple attributes per each. This could be
accomplished by either not specifying the attributes at all, or by using
the wildcard (*) to refer to all attributes. With respect to specifying the
notification method, cases of the previous form also apply here.

let screen3 observe line, point(*);
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Table 3. Auto-generated Aspect for the Observer design pattern construct

A. Class-level Observing
1 protected privileged aspect ObserverProtocol_1
2 {
3 private List observers = new ArrayList();
4 //-----------------------------------------
5 protected pointcut newInstance(Screen obs):
6 execution(Screen.new(..)) && target(obs);
7
8 after(Screen obs): newInstance(obs){
9 observers.add(obs);

10 }
11 //-----------------------------------------
12 protected pointcut subjectChange():
13 set(* Line.*) ||
14 set(* Point.*) ;
15
16 after(): subjectChange() {
17 Iterator it = observers.iterator();
18 while (it.hasNext()){
19 Screen obs = (Screen)it.next();
20 obs.display(thisJoinPoint.getSignature() + " changed..");
21 }
22 }
23 }

B. Instance-level Observing
1 protected privileged aspect ObserverProtocol_2
2 {
3 private Screen obs;
4
5 public void addObserver(Screen obs) {
6 this.obs = obs;
7 }
8 //------------------------------------------
9 public interface Subject {}

10
11 declare parents: Line implements Subject;
12
13 protected pointcut subjectChange(Subject s):
14 (
15 set(* Line.length)
16 ) && target(s);
17
18 after(Subject s): subjectChange(s) {
19 obs.resize(((Line) s).length);
20 }
21 }

4.3. Semantics

After parsing ‘let� observe� exec’ statements and matching them with the given
syntax of the Observer construct, the compiler then moves to other compilation
passes that are concerned with the construct semantics. During these passes (with
the help of the type system), the compiler starts recognizing class types, instances,
attributes and methods used in the Observer construct application by carrying out
variable scoping, type-checking, and node translation. If such checking is passed
successfully, the compiler then carries out the code transformation (or rewriting).
Otherwise, a semantic error is generated by the compiler.
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4.3.1. Variable Scoping:

The compiler checks the validity of each element of the Observer construct (i.e.,
classes, instances, attributes, and the notification method) to see whether they are
not defined or out-of-scope. The compiler in such cases generates a semantic error.
Another check is conducted when the construct is applied without specifying a
notification method. In this case, a programmer has to define a notification method
named display in the observing class to be responsible for refreshing it with the
changes that happened. If such a method is not defined, the compiler also produces
a semantic error.

4.3.2. Type checking:

In this process, the compiler picks the class included in the Observer construct
and checks its eligibility. For instance, when the programmer uses an Observer
construct for primitive types, the compiler checks and produces an appropriate
alert message showing that only classes or instances can be applied. Also, when
a programmer uses the instance-level observing form, the argument type of the
notification method must match the type of the observed attribute. For the case
of applying the construct with a default notification method, the compiler would
expect programmers to define a method called display to observe the class that
accepts the changes as a String type.

4.3.3. Node Translation and Code transformation:

After achieving all checks successfully, the compiler starts transforming LetObserve

nodes into their corresponding aspect declaration nodes that the original AspectJ
compiler can deal with. This node translation is executed through a code transfor-
mation pass of the compiler where each ‘let � observe � exec’ statement is trans-
formed into a specialized aspect that contains the proper crosscutting concerns of
the observing statement as shown in Table 3.

Every auto-generated aspect is assigned a name of the form
‘ObserverProtocol_#’, where the hash symbol refers to a sequence number that is
assigned for each auto-generated observing aspect. The newly generated node (i.e.,
the aspect declaration) is created outside the class that contains the application of
the Observer construct. Aspects generated for class-level observing purposes have
a different implementation style from the aspects used for instance-level.

• Class-Level Observing: As shown in Table 3.A, an aspect is generated for
the ‘let�observe�exec’ statement (1). This aspect implements the observ-
ing logic for all instances of the supplied observer class in the statement.
Therefore, a list of observers (Line 3) is employed to hold a reference copy
for every newly created object of that observer class. Object construction
joinpoints are crosscutted using the pointcut declared in Lines 5-6 and are
advised in Lines 8-10. Whenever a subject has changes on its associated at-
tributes, the subjectChange pointcut (declared in Lines 12-14) is executed.
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Consequently, every instance of that observing class is notified (this task
is accomplished by the advice declared in Lines 16-22). After a successful
generation of the desired aspects, the compiler replaces ‘let�observe�exec’
statements by empty statements (i.e., semicolons ‘;’).

• Instance-Level Observing: In instance-level observing, an aspect is also gen-
erated for the ‘let � observe � exec’ statement (2) as shown in Table 3.B.
This aspect has a single observer field (Line 3) that holds a reference copy of
the observing instance that is assigned via the addObserver method, which
is invoked at the client application (i.e., everywhere the ‘let�observe�exec’
statement is provided in the source code). Once the subject has changes in
its attributes, the subjectChange pointcut declared in Lines 13-16 is exe-
cuted. As a result, the observing instance is notified (the advice declared
in Lines 18-20 triggers such a notification) using the notification method
that was already associated with the statement of the Observer construct.
In addition, this aspect has a public Subject interface (Line 9) that is im-
plemented by all observed (Subject) classes. This interface can then used in
place of subject classes to capture changes of any subject implementing it.
After generating this aspect successfully, the ‘let�observe�exec’ statement
is replaced by a method-call statement as follows:

ObserverProtocol_2.aspectOf().addObserver(screen1);

5. The Decorator Design Pattern

Decorator is a structural design pattern that allows performing additional actions
on methods. It has several advantages over sub-classing (i.e. inheritance), since ex-
tra actions and objects can be added or removed per object at runtime. Moreover,
adding more than one decoration action is easier than doing that in sub-classing.
Sub-classing may lead to the subclasses explosion problem. Moreover, the deco-
ration precedence is important, and it is difficult to manage the precedence issue
using sub-classing. The Decorator design pattern provides flexibility in defining and
maintaining decoration precedence.

5.1. Syntax

Similar to the Observer design pattern, we design a more abstract and modular
construct using our extensible compiler to implement the Decorator design pattern.
Our Decorator construct supports the use of fewer lines of code than AspectJ to
implement different levels of decorating. We use the following EBNF notation to
represent the syntax of our Decorator construct:

<DecorateWith>::= "decorate" <class_id> "." <method_declaration>
"with" <block> [ "to" <object_ids_list> ";" ]
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Such a syntax allows programmers to decorate all objects of a certain class (i.e.,
class-level decorating) or specific objects of the class (i.e., instance-level decorating).
In both cases, our Decorator construct decorates a specific method of the class (i.e.,
to decorate N methods, N of DecorateWith statements should be used).

5.2. Application

Listing 1 shows an example of how programmers can apply the Decorator construct.
In this example, our DecorateWith construct is applied to two versions of the same
display method of the Screen class. First we pass a single String parameter to the
display method and then we pass two String parameters to it.

• Class-level Decorating: Applying the class-level decorating is shown in
Lines 2-4 of Listing 1. The method display of the Screen class is decorated
with a dollar decoration (i.e., $$$). This way of decoration allows program-
mers to decorate a single method. Programmers need to write the name of
the class in addition to the method name. In this case, all instances of the
specified class are decorated, which reduces any possible implementation
overhead. Whenever the display(String) method is invoked by a Screen

object (Lines 6 and 8), the associated decoration is applied. Hence, instead
of printing the strings ‘111’, ‘222’ and ‘333’, the program prints the dec-
orated versions of these strings, which appear like $$$111$$$, $$$222$$$
and $$$333$$$, respectively.

• Instance-level Decorating: Instance-level decorating has a similar struc-
ture to the class-level decorating. The only difference is that Instance-level

decorating allows to specify which objects to decorate using our Decorator
construct. The first application of our instance-level decorating is given in
Lines 11-14 of Listing 1 by applying a star decorator to the String parameter
of the display method. The target objects here are screen1 and screen2.
The second application is shown in Lines 16-19, which employs a bracket
decoration and targets the screen1 object only. Decorating per instance
is not supported by the original AspectJ implementation of the Decorator
design pattern introduced by Hannemann and Kiczales [3]. We resolve such
a limitation in our proposed extension by allowing our constructs to store
reference copies of the decorated objects in the auto-generated aspect.

The invocation of the display method using two String parameters is shown in
Lines 22, 23, and 24 of Listing 1. The display method invoked by screen1 is dec-
orated with both the star and the bracket decorators. Hence, the display method
prints the doubly-decorated version of the strings (i.e. ‘[[[*** aaa bbb ***]]]’).
We discuss the decoration precedence later in this paper.
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Listing 1. Application of Decorator Construct
1 // Class-level Dollar Decorator
2 decorate Screen.display(String s) with {
3 s = "$$$" + s +"$$$";
4 }
5 // invoke the decorated method
6 screen1.display("111"); // the decorated version
7 screen2.display("222"); // the decorated version
8 screen3.display("333"); // the decorated version
9 //-----------------------------------------------

10 // Instance-level Star Decorator
11 decorate Screen.display(String fn, String ln) with {
12 fn = " *** " + fn;
13 ln = ln +" *** ";
14 } to screen1, screen2;
15 // Instance-level Bracket Decorator
16 decorate Screen.display(String fn, String ln) with {
17 fn = " [[[ " + fn;
18 ln = ln +" ]]] ";
19 } to screen1;
20
21 // invoke the decorated method
22 screen1.display("aaa", "bbb"); // both [] and * decorators
23 screen2.display("ccc", "ddd"); // only * decorators
24 screen3.display("eee", "fff"); // un-decorated version

5.3. Semantics

After parsing ‘decorate�with’ statements and matching them with the given syntax
of the Decorator construct, the compiler then moves to other compilation passes
that are concerned with the construct semantics. During these passes (with the help
of the type system), the compiler starts recognizing class types, instances, attributes
and methods used in the Decorator construct application by carrying out variable
scoping, type-checking, and node translation.

5.3.1. Scoping:

Our extended compiler checks whether the decorated class (or object) is defined
within the scope of the ‘decorate � with’ statement. Also, our extended compiler
checks whether the decorated method exists in the provided class and whether
the method accepts the number and type of arguments specified in the Decorator
construct. In addition, the body of the Decorator construct should have access to
local variables only declared within which; i.e., global variables are not allowed to
be used since they are inaccessible when code transformation happens. An empty
body implies an empty decoration.

5.3.2. Type checking:

The compiler collects the types included in the Decorator construct and verifies
their eligibility. The compiler first checks that the Decorator construct is applied
to methods defined inside class types. Second, the type of instances specified in the
Decorator construct should match the class type of the decorated method.
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5.3.3. Node Translation and Code transformation:

Our extended compiler transforms the DecorateWith node into corresponding Java
and AspectJ nodes based on the parameters provided in the Decorator construct.
An aspect declaration node named ‘DecoratorProtocol’ is generated to implement
the concrete decoration. Similar to the Observer design pattern, every ‘decorate�
with � to’ statement is transformed into a specialized aspect that contains the
cross-cutting concerns of the Java program as shown in Table 4. All the generated
decorator aspects are assigned the name ‘DecoratorProtocol_#’, where the hash
symbol represents a sequence number assigned per each Decorator construct.

Table 4. Auto-Generated Aspect for Decorator Pattern

A. Class-level Decorating
1 protected privileged aspect DecoratorProtocol_1
2 {
3 protected pointcut decoratedMethod
4 (String s):
5 call(* (Screen).display(String)) && args(s);
6
7 void around (String s):
8 decoratedMethod(s) {
9 s = " $$$ " + s + " $$$ ";

10 this.proceed(s);
11 }
12 }

B. Instance-level Decorating
1 protected privileged aspect DecoratorProtocol_2
2 {
3 private List decs = new ArrayList();
4
5 public void addDecorator(Screen dec) {
6 decs.add(dec);
7 }
8 protected pointcut decoratedMethod
9 (String s, Screen dec):

10 call(* Screen.display(String)) && args(s) && target(dec);
11
12 void around(String s, Screen dec):
13 decoratedMethod(s, dec) {
14 if(decs.contains(dec)) {
15 s = " *** " + s + " *** ";
16 }
17 this.proceed(s, dec);
18 }
19 }

• Class-Level Decorating As shown in Table 4 (A), a single aspect is gener-
ated for each class-level Decorator construct. This aspect declares a generic
pointcut (Lines 3-6) that captures the joinpoints of decorated methods
when they are invoked by objects of the class specified in the Decorator
construct. Once the decorated method is called, the around advice (Lines
8-12) decorates the corresponding arguments of the method, and then pro-
ceed to the method call instantly. After that, the DecorateWith nodes are
replaced by empty statements (i.e. semicolons ‘;’).
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• Instance-Level Decorating As shown in Table 4 (B), a single aspect is
generated for each instance-level Decorator construct. This aspect main-
tains a list (Line 3) that holds reference copies of the instances associated
with the pattern construct. The decoration registration is achieved by the
addDecorator method (Lines 5-7), which is invoked at the client applica-
tion. Whenever the decorated method is invoked by an object of the dec-
orated class, the decoratedMethod pointcut (Lines 8-12) is triggered and,
subsequently, the around advice checks the existence of the calling object in
the list (Lines 14-20). If the target object is considered for decoration, then
the corresponding arguments of its method are decorated (Lines 16-18),
and then proceed to calling the method call instantly (Line 19). Otherwise,
the original (un-decorated) method is called. The DecorateWith nodes are
replaced by method calling statements for each decorated instance, as fol-
lows:

DecoratorProtocol_2.aspectOf().addDecorator(screen1);

DecoratorProtocol_2.aspectOf().addDecorator(screen2);

Decoration Precedence In the Decorator design pattern, it is important to de-
termine the precedence of the decorators. This means that the decorators should be
applied in a certain order. In our approach, the decoration precedence depends on
the declaration sequence of Decorator constructs. In other words, the firstly declared
Decorator construct has the highest precedence and, hence, is applied first.

6. Results and Discussion

In this section, we highlight the characteristics of our proposed extensible com-
piler. We compare our approach to the AspectJ implementation of design patterns
proposed by Hannemann and Kiczales [3]. Moreover, we show how we address the
major issues of implementing design patterns introduced in the literature.

6.1. Implementation issues of design patterns

Implementation overhead: The implementation overhead of design patterns is
a major issue in conventional approaches (e.g., using OO or AO constructs). Con-
ventional approaches to implement design patterns require programmers to invest
time and effort to implement design patterns in addition to the functional code. In
our approach, we address this issue by proposing an extensible compiler that sup-
ports the implementation of design patterns using concise language constructs. Our
approach automatically generates the concrete implementation of design patterns,
which saves the time and effort required to implement them manually. In addition,
programmers can reuse our design pattern constructs anywhere in the program
without the need to worry about dependencies. Finally, using our approach, it is
easy to keep track of the implementation of design patterns, since our design pattern
constructs are recognizable units that can assist in design pattern detection [22].
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Amount of written code: Our proposed extensible compiler allows programmers
to write concise implementation code of design patterns than any of the state-of-
the-art approaches. We show how many lines of code required for a simple imple-
mentation of design patterns in the following:

• For Singleton design pattern, our Singleton construct does not require any
additional lines of code to declare a class as Singleton. A class only needs a
singleton modifier to be Singleton. Using the conventional OO approach,
programmers need to write at least five lines of code for a simple implemen-
tation of the Singleton design pattern. In addition, a single line of code is
required to instantiate n instances of the Singleton class using our approach,
while n lines of code are required when using the conventional approach.

• For the Observer design pattern, it is clear from the example presented in
section 4 that only one line of code is required to implement the Observer
design pattern, for both class-level and instance-level. In contrast, AspectJ
requires 16 lines of code for the class-level implementation and eighteen for
the instance-level.

• For the Decorator design pattern, the presented example in Listing 1 clearly
shows that the effective number of lines of code is three for both class-level

and instance-level. In contrast, AspectJ requires ten lines of code for the
class-level implementation and 18 for the instance-level implementation.

Modularity: In our approach, modularity is witnessed by separating the concrete
implementation of design patterns from the actual design pattern application. Con-
crete implementations of design patterns are not visible to programmers and are
isolated from one application to another, which allows programmers to add, remove,
and maintain their design pattern applications in modular and easy-to-manage
units.

6.2. Characteristics of our approach

Hybrid: Our approach combines different characteristics of the state-of-the-art
approaches. Our approach is introduced as an extensible AspectJ compiler, which
makes it able to abstract plenty of code using concise constructs. This feature
is inspired by meta-programming language [23]. In addition, our approach auto-
generates aspects based on the information passed as parameters by our proposed
constructs. This feature is adapted from the parametric aspects [24]. Although our
approach is an extensible AspectJ compiler, it supports a instance-level advising,
which is inspired from the classpect model introduced in Eos [25].

Expressive: The syntax of our design pattern constructs is clear, concise, and
expressive. Our proposed constructs do not require programmers to import any
other packages, create other classes (or aspects), or worry about missing a design
concept of design patterns. Programmers simply need to understand the syntax
of our design pattern constructs and how to use them. Moreover, the readability
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and writeability are highly improved as the written code is shorter and more self-
explanatory. Hence, the absence of dependencies makes it very easy to maintain
and reuse the source code.

Multi-level application: Our approach supports different levels of design pattern
application. Our constructs help programmers to decide where and how to apply a
certain design pattern. The class-level application is useful in the cases where all
objects of a class need to employ the design pattern functionality (e.g., observing or
decorating). On the other hand, the instance-level application is useful when only
a subset of class objects need the design pattern functionality or when each object
needs to have its own application of the design pattern.

6.3. Complex design patterns

Extending our compiler to implement more complex design patterns, such as Visitor

might require more complicated factory nodes and compiler passes. In addition, for
some design patterns, such as Facade, extending our compiler could be infeasible,
since the eventual design pattern contracts would require almost the same amount
of effort and lines of code to apply a certain design pattern. Hence, we encourage
developers to assess the feasibility of extending our extensible compiler for such
kinds of design patterns.

6.4. Practical Implications
Our approach would attract software developers to use our proposed design pat-
tern constructs in their applications and to extend our extensible compiler further
to support the implementation of other design patterns. Using our approach helps
programmers maintain their code by keeping track of the design pattern constructs.
In addition, our approach reduces fault and defect proneness, since programmers do
not touch the back-end concrete implementation of the design patterns. Moreover,
considering that our approach encourages the use of explicit language constructs, re-
searchers can find it easy to locate design pattern instances, especially when dealing
with large, undocumented software systems.

7. Related Work
Hannemann and Kiczales [3] used AO constructs to improve the implementations
of the original 23 design patterns using AspectJ. They analyzed and evaluated the
improvement achieved to the implementation of the patterns according to different
metrics, which also have been addressed later by Rajan [12] using Eos extended
by the classpect construct that unifies class and aspect in one module. When com-
pared with Hannemann’s implementation in terms of lines of code and the intent of
the design patterns, Rajan observed that Eos could efficiently outperform AspectJ
in implementing seven design patterns, while being similar for the other 16 pat-
terns. In addition, the instance-level advising feature supported by Eos classpects
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was another advantage over AspectJ. This feature allows a direct representation
of runtime instances without the need to imitate their behavior. Sousa and Mon-
teiro [26] proposed CaesarJ, which supports the family polymorphism. CaesarJ em-
ploys a collaboration interface that can hold a set of inner abstract classes, and
some second-level classes: the implementation and binding parts. Also, their re-
sults demonstrated a positive influence of the collaboration interface on modularity,
generality, and reusability over those with AspectJ. Gomes and Monteiro [27] intro-
duced the implementation of five design patterns in Object Teams compared with
that in Java and AspectJ. Regardless of Object Teams goals, it showed powerful
support in implementing design patterns efficiently, and with more than one alter-
native. The entire transformation of aspects into teams was described in detail in
their work. The common issue with all these different approaches is that they suf-
fer from the implementation overhead and traceability problems, since the concrete
implementation of design patterns is required to be manually written, or at least
understood and followed, by programmers, which may reduce their productivity.

Another approach was introduced by Zook et al. [23]. This approach uses code
templates for generating programs as their concrete implementation, called Meta-
AspectJ (MAJ ). Development time is reduced in this approach since it enables
expressing solutions with fewer lines of code. With respect to design patterns, MAJ

provides some general-purpose constructs that reduce writing unnecessary code.
However, programmers cannot explicitly declare the use of design patterns at certain
points of the program, which may also lead to a traceability problem.

Another trend, which is close to our approach, was introduced by Bosch [4], who
provided a new object model called LayOM. This model supports explicitly repre-
senting design patterns in C++ with the use of layers. It provides several language
constructs that represent the semantics of 8 design patterns and can be extended
with other design patterns. Although LayOM could resolve the traceability prob-
lem and enhance modularity, it lacks expressiveness as it has a complicated syntax
consisting of message forwarding processes that might confuse programmers. Our
approach seems to provide similar power to LayOM, but, in contrast, the Observer
construct in our approach has a more concise, expressive, easy-to-use, and easy-to-
understand syntax.

Hedin [28] also introduced a new technique that is slightly similar to LayOM but
using rules and pattern roles. The rules and roles can be defined as class inheritance
and specified by attribute declarations. Doing so enables the extended compiler to
automatically check the application of patterns against the specified rules. However,
the creation of rules, roles, and attributes makes syntax more complex and lacks
expressiveness and requires extensive effort to learn and build them.

Lovatt et al. [29] proposed an extensible Java compiler called PEC. Design pat-
terns in PEC are provided as marker interfaces. A class must implement a ready-
made interface in order to apply a certain design pattern. Then, PEC checks the
structure and behavior of such used design pattern. PEC allows programmers to
assign their desired design pattern to a given class and then implement such design
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pattern manually. However, PEC does not reduce the effort needed to implement
design patterns (i.e., it suffers from implementation overhead).

Budinsky et al. [30] introduced a tool that automates design pattern implementa-
tion. Each design pattern has a certain amount of information like name, structure,
sample code, when to use, etc. The programmer can supply information about the
desired pattern, then its implementation (in C++) is generated automatically. This
approach allows programmers to customize design patterns as needed. However, the
modularity and reusability in their proposed approach are missed. Their approach
also suffers from a traceability problem.

Aljasser [24] proposed an approach that uses parametric aspects (i.e., ParaAJ)
to facilitate the implementation of three design patterns, namely Singleton, Ob-
server, and Decorator. However, ParaAJ does not support different scenarios of
design pattern implementations and fails to implement the Decorator design pat-
tern. The author suggests that introducing programming language constructs to
implement design patterns is necessary to simplify the development of recurring
design patterns.

Batdalov and Nikiforova et al. [31] studied the features of programming lan-
guages and how such features can be used to reduce the complex implementations
of design patterns. In addition, the authors proposed supplementary features to pro-
gramming languages that may support better implementations of design patterns.
However, their proposed features are orthogonal to existing OO features, which may
require programmers to participate in writing the design pattern implementation
code. Their study suggests that programming languages are still unable to make
the implementation of design patterns easier. They also suggest that programming
languages need to be extended to better support easier implementations of design
patterns.

Springer et al. [32] proposed a context-oriented programming approach to im-
plement three design patterns, namely Observer, Decorator, and Visitor. Their ap-
proach can deal with classes as layers, where partial methods of other classes can
be added. Their approach supports multiple application levels of design patterns
and resolves some conventional issues, such as object interactions and loss of ob-
ject identity. Seidl et al. [33] proposed variability-aware design patterns that are
automatically generated in software product line development. Despite the research
invested to support the implementation of design patterns, previous approaches are
not applied as recognizable units. Programmers still need to be aware of the design
pattern implementation code to place their intended actions inside the proposed
classes.

Gatrell et al. [6] reported that classes that implement design patterns are more
fault-prone than normal classes. Sousa et al. [7] investigated the association between
the use of design patterns and code smells. The authors found that conventional
implementation of design patterns is associated with bad code smells. Similarly,
Alkhaeir and Walter [8] found that the presence of code smells in design pattern
classes increases the defect-proneness of source code. In addition, Onarcan et al. [9]
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found that instances of design patterns have a high correlation with the priority of
software defects. Furthermore, prior research has shown that manually implement-
ing design patterns can affect program understandability and makes it challenging
to spot the code portions in which a design pattern is used [10, 11, 34].

Therefore, it is important for programmers to avoid the manual implementation
of design patterns. In this paper, we propose an extensible compiler that allows
programmers to apply design patterns in their code using concise language con-
structs. Our approach allows language constructs to be used in a modular, easy-
to-understand syntax. Our approach is based on source-to-source transformation of
code [35, 36], in which our proposed design pattern constructs (i.e., meta-program
representation [37]) are transformed into AspectJ code.

8. Conclusion

In this paper, we have proposed an extensible Java compiler to support the im-
plementation of design patterns using concise, expressive language constructs. We
have developed our extensible compiler using the abc extensible compiler. We have
applied our approach to three commonly used design patterns, namely Singleton (a
creational pattern), Observer (a behavioral pattern), and Decorator (a structural
pattern). Our proposed approach addresses existing issues regarding design pattern
implementation introduced by conventional approaches. For example, using con-
ventional approaches, programmers need to maintain the classes and interfaces of
a certain design pattern. In our approach, design pattern constructs are designed
to have an expressive syntax, in which programmers can apply certain design pat-
terns without caring about the concrete implementation of the design patterns. In
addition, our approach provides programmers with two levels of application of de-
sign patterns: class-level and instance-level. We conclude that our approach would
attract software developers to (i) use our proposed design pattern constructs in
their applications and (ii) extend our extensible compiler further to support the
implementation of other design patterns.
Future work. We aim in the future to improve our approach to (a) support fur-
ther scenarios in which programmers can control the way design patterns are used
and (b) optimize the code transformation process. We also aim to perform con-
trolled experiments to empirically evaluate the productivity of programmers using
our approach and other conventional or recent approaches.
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