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METHODS, COMPUTER READABLE
MEDIA, AND SYSTEMS FOR COMPILING
CONCISE EXPRESSIVE DESIGN PATTERN

SOURCE CODE

STATEMENT REGARDING PRIOR
DISCLOSURES BY THE INVENTORS

Aspects of this technology were disclosed in Ghaleb T A,
Aljasser K, AlTurki M A. Implementing the observer design
pattern as an expressive language construct. The Tenth
International Conference on Software Engineering
Advances. ThinkMind, 2015; 463-469, which is incorporated
herein by reference in its entirety.

BACKGROUND

Technical Field

The present disclosure is directed generally to computer
software compilers, and, more particularly, to methods,
computer readable media, and systems for compiling con-
cise expressive design patterns within computer software
source code.

Background

Object-oriented (OO) design patterns can include reus-
able software design and coding solutions that reorganize
OO programs into a well-structured and reusable design
(Vlissides J, Helm R, Johnson R, Gamma E. Design pat-
terns: Elements of reusable object-oriented software. Read-
ing: Addison-Wesley 1995; 49:120). Design patterns origi-
nally were implemented using OO features, such as
polymorphism and inheritance. After Aspect-oriented (AO)
programming languages emerged, researchers started to
employ AO constructs to make the implementation more
reusable and modular.

Despite the wide range of applications of design patterns,
manually implementing them may lead to several problems
including most notably implementation overhead, traceabil-
ity and code reusability (Bosch J. Design patterns as lan-
guage constructs. Journal of Object-Oriented Programming
1998; 11(2): 18-32; incorporated herein by reference). For
example, a programmer may be forced to write several
classes and methods to achieve trivial behaviors, which can
lead to sizable programming overhead, scattering of actions
everywhere in the program, and reducing program under-
standability. Although design patterns make design reusable,
the code (or at least part of the code) used to implement them
may not be reused later, in some instances. Most design
patterns have been implemented differently from one
approach to another in the literature, while implementation
of simple design patterns, like singleton and facade, varied
only slightly. The more complex and widely used design
patterns, such as observer and decorator, have had signifi-
cantly different implementations from one approach to
another.

Design patterns have been widely used in practice in
many applications, for example, in the observer design
pattern, the implemented scenario is conventionally one
having a single subject with multiple observers, where the
association of observers to subjects is subject-driven. For
instance, implementations of the observer design pattern
may be illustrated using the example of having Line, Point
and Screen classes, where the observing protocol is imple-
mented in a way that a single subject can have a list of
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observers (Hannemann J, Kiczales G. Design pattern imple-
mentation in Java and Aspect]. ACM Sigplan Notices, vol.
37, ACM, 2002; 161-173 and Rajan H. Design pattern
implementations in Eos. Proceedings of the 14th Conference
on Pattern Languages of Programs, A C M, 2007; 9:1-9:11;
both incorporated herein by reference). This particular
example actually shows a different case where many sub-
jects (i.e., Lines and Points) can be observed by a single
observer (i.e., Screen).

Another issue of conventional implementations of design
patterns is concerned with the indirect ways of implement-
ing them. Programmers in such approaches may not deal
with the pattern as a recognizable unit in programs. Instead,
they may be required to manually build certain protocols for
each pattern and apply such protocols to each instance
interested in utilizing those patterns, which can lead to
increased dependencies in the programmer’s code, which
may sometimes make the code error-prone.

Some implementations of the present disclosure were
conceived in light of the above mentioned problems and
limitations of conventional programming techniques, meth-
ods and tools.

SUMMARY

Some implementations can include a method comprising
obtaining a design pattern lexer supplement, and extending
a lexer of a compiler using the design pattern lexer supple-
ment. The method can also include extending grammar rules
of the compiler to include one or more design pattern
grammar extensions, and extending a parser/generator to
include one or more design pattern extensions. The method
can further include providing the compiler with a node
factory including one or more design pattern nodes, and
parsing source code containing one or more concise expres-
sive design pattern source code elements using the parser/
generator and the lexer.

The method can also include verifying syntax of the
source code containing one or more concise expressive
design pattern source code elements using the parser/gen-
erator, and performing semantic checking of the source code
containing one or more concise expressive design pattern
source code elements using the parser/generator. The
method can further include translating the one or more
concise expressive design pattern source code elements into
one or more expanded design pattern source code elements
using the parser/generator and input from the node factory.

In some implementations, the design pattern lexer supple-
ment can include a list of tokens representing design pattern
keywords as grammar terminals. The design pattern gram-
mar extensions can include keyword definitions correspond-
ing to tokens declared in a grammar. The one or more design
pattern nodes include one or more of singleton nodes,
observer nodes, or decorator nodes. The parsing can be
performed with a parser/generator of the compiler.

The method can also include performing variable scoping
of the source code containing one or more concise expres-
sive design pattern source code elements. The method can
further include performing type checking of the source code
containing one or more concise expressive design pattern
source code elements. The method can also include per-
forming subsequent compiler passes of the expanded design
pattern source code elements to compile the source code into
compiled code.

Some implementations can include a non-transitory com-
puter readable medium having instructions stored therein
that, when executed by one or more processors, cause the
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one or more processors to perform a method. The method
can include obtaining a design pattern lexer supplement, and
extending a lexer of a compiler using the design pattern lexer
supplement. The method can also include extending gram-
mar rules of the compiler to include one or more design
pattern grammar extensions, and extending a parser/genera-
tor to include one or more design pattern extensions. The
method can further include providing the compiler with a
node factory including one or more design pattern nodes,
and parsing source code containing one or more concise
expressive design pattern source code elements using the
parser/generator and the lexer.

The method can also include verifying syntax of the
source code containing one or more concise expressive
design pattern source code elements using the parser/gen-
erator, and performing semantic checking of the source code
containing one or more concise expressive design pattern
source code elements using the parser/generator. The
method can further include translating the one or more
concise expressive design pattern source code elements into
one or more expanded design pattern source code elements
using the parser/generator and input from the node factory.

In some implementations, the design pattern lexer supple-
ment can include a list of tokens representing design pattern
keywords as grammar terminals. The design pattern gram-
mar extensions can include keyword definitions correspond-
ing to tokens declared in a grammar. The one or more design
pattern nodes include one or more of singleton nodes,
observer nodes, or decorator nodes. The parsing can be
performed with a parser/generator of the compiler.

The method can also include performing variable scoping
of the source code containing one or more concise expres-
sive design pattern source code elements. The method can
further include performing type checking of the source code
containing one or more concise expressive design pattern
source code elements. The method can also include per-
forming subsequent compiler passes of the expanded design
pattern source code elements to compile the source code into
compiled code.

Some implementations can include a system comprising
one or more processors coupled to a non-transitory computer
readable medium having stored therecon software instruc-
tions that, when executed by the one or more processors,
cause the one or more processors to perform operations. The
operations can include obtaining a design pattern lexer
supplement, and extending a lexer of a compiler using the
design pattern lexer supplement. The operations can also
include extending grammar rules of the compiler to include
one or more design pattern grammar extensions, and extend-
ing a parser/generator to include one or more design pattern
extensions.

The operations can further include providing the compiler
with a node factory including one or more design pattern
nodes, and parsing source code containing one or more
concise expressive design pattern source code elements
using the parser/generator and the lexer. The operations can
also include verifying syntax of the source code containing
one or more concise expressive design pattern source code
elements using the parser/generator, and performing seman-
tic checking of the source code containing one or more
concise expressive design pattern source code elements
using the parser/generator. The operations can further
include translating the one or more concise expressive
design pattern source code elements into one or more
expanded design pattern source code elements using the
parser/generator and input from the node factory.
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The design pattern lexer supplement can include a list of
tokens representing design pattern keywords as grammar
terminals, wherein the design pattern grammar extensions
can include keyword definitions corresponding to tokens
declared in a grammar. The one or more design pattern nodes
include one or more of singleton nodes, observer nodes, or
decorator nodes.

The operations can also include performing variable scop-
ing of the source code containing one or more concise
expressive design pattern source code elements, and per-
forming type checking of the source code containing one or
more concise expressive design pattern source code ele-
ments. The operations can further include performing sub-
sequent compiler passes of the expanded design pattern
source code elements.

The foregoing general description of the illustrative
embodiments and the following detailed description thereof
are merely exemplary aspects of the teachings of this
disclosure, and are not restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete appreciation of this disclosure and many
of the attendant advantages thereof will be readily obtained
as the same becomes better understood by reference to the
following detailed description when considered in connec-
tion with the accompanying drawings, wherein:

FIG. 1 is a diagram of an example concise expressive
design pattern compiler environment in accordance with
some implementations;

FIG. 2 is a flowchart of an example method for compiling
concise expressive design pattern source code using a com-
piler extended in accordance with some implementations;

FIG. 3A is a diagram of an example node factory for
building design pattern nodes within a compiler in accor-
dance with some implementations;

FIG. 3B is a diagram of an example type extension in
accordance with some implementations;

FIG. 3C is a diagram of a diagram showing an example
compiler extension in accordance with some implementa-
tions;

FIG. 3D is a diagram of example compiler extension
passes in accordance with some implementations;

FIG. 4 is a diagram of an example singleton class in
accordance with some implementations;

FIG. 5A is a diagram of an example conversion of a
singleton node into a ClassDecl node in accordance with
some implementations;

FIG. 5B is a diagram of an example singleton instantiation
construct translation in accordance with some implementa-
tions;

FIG. 6A is a diagram of example observer design pattern
scenarios in accordance with some implementations;

FIG. 6B is a diagram of an example conversion of a
LetObserve node into an AspectDecl node in accordance
with some implementations;

FIG. 6C is a diagram of an example conversion of a
DecorateWith node into an AspectDecl node; and

FIG. 7 is a diagram of an example processing device
configured for compiling concise expressive design pattern
source code in accordance with some implementations.

DETAILED DESCRIPTION

In the drawings, like reference numerals designate iden-
tical or corresponding parts throughout the several views.
Further, as used herein, the words “a,” “an” and the like
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generally carry a meaning of “one or more,” unless stated
otherwise. The drawings are generally drawn to scale unless
specified otherwise or illustrating schematic structures or
flowcharts.

Aspects of this disclosure are directed to methods, sys-
tems, and computer readable media for compiling concise
expressive design patterns within computer software source
code. Some implementations can include methods and sys-
tems that resolve some problems of implementing design
patterns in an OO and/or AO program. The disclosed tech-
nique facilitates writing programs that apply design patterns
to its structure and behavior, in an easy manner. Some
programming language constructs (associated with new key-
words, syntax, and semantics) are built that convey the goal
of some design patterns in order to allow programmers to
implement the design patterns easily. These constructs are
added as extensions to a compiler.

In general, some implementations can include methods,
systems and computer readable media for a compiler
approach to implementation of design patterns that are
concise and expressive, which can lead to simpler, intuitive,
and easier to apply source code. Some implementations can
include a Java language extension. The application of design
patterns using the disclosed techniques is more expressive
and is significantly simplified compared to conventional
design pattern coding. Thus, some implementations promote
code correctness by reducing chances of making program-
ming errors (both in the implementation of the pattern and
the code using the pattern), resulting in increased produc-
tivity, enhanced modularity, and reduced dependencies
between modules.

Some implementations can include, as a non-limiting
example, an extension to Java/Aspect] using abc (Aspect-
Bench Compiler) with the Polyglot frontend (Avgustinov P,
Christensen A S, Hendren L, Kuzins S, Lhotak J, Lhotak O,
De Moor O, Sereni D, Sittampalam G, Tibble J. abc: An
extensible aspectj compiler. Transactions on Aspect-Ori-
ented Software Development 1. Springer, 2006; 293-334 and
Nystrom N, Clarkson M R, Myers A C. Polyglot: An
extensible compiler framework for java. Compiler Construc-
tion, Springer, 2003; 138-152, both incorporated herein by
reference.). It will be appreciated that the techniques, meth-
ods, systems, and computer readable media described herein
can be applied as extensions to, or integrated within, various
computer languages and various software tools for compil-
ing source code in those languages such as compilers, front
ends, and/or other software development tools.

In order to illustrate the principles of the disclosed subject
matter, three commonly used design patterns, namely single-
ton, observer, and decorator patterns, are described below as
illustrations of the compiler approach of the present disclo-
sure. These three patterns have been selected as examples, in
part, because they involve a lot of concerns that have been
discussed in the literature. The constructs and techniques
disclosed herein can provide two levels of applications:
class-level and instance-level. This can provide a technical
solution and advantage to conventional techniques. For
example, with respect to instance decorating discussed
below, such a feature does not exist in the original Aspect]
implementation of the decorator pattern described in the
literature. Through an implementation of the subject matter
described herein, the above-mentioned limitation is
resolved.

In some implementations, a compiler approach to concise
expressive design pattern software as described herein per-
mits implementation of design patterns to be simpler, intui-
tive, and easier to apply. The application of design patterns
as described herein may be more explicit and may be
significantly simplified compared with some previous appli-
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cations. Consequently, implementations of the disclosed
subject matter can promote code correctness by reducing
chances of making programming errors (both in the imple-
mentation of the pattern and the code using the pattern),
resulting in increased productivity, enhanced modularity,
and reduced dependencies between modules.

FIG. 1 is a diagram of an example concise expressive
design pattern compiler environment 100 in accordance with
some implementations. The environment 100 includes
source code with concise expressive design patterns 102.
Examples of the concise expressive design pattern source
code elements are described below in connection with the
singleton, observer and decorator examples.

The environment 100 also includes an extended compiler
104 including a lexer 108, a parser/generator 110, and a
grammar 112. The extended compiler 104 may include other
common compiler components that are not shown for clarity.
The extended compiler 104 includes extensions that permit
the extended compiler to compile concise expressive design
pattern code elements as described herein.

The extensions can include design pattern lexer exten-
sions 106 (or supplements). A first step in the disclosed
compiler-based approach is to define appropriate keywords
that will be used for implementing and applying design
patterns in a concise and expressive manner. To this end, the
lexer of the base compiler can be supplemented to include all
potential keywords to be used in the proposed compiler-
based approach. Extending the compiler lexer can be done
in two phases. In the first phase, a list of tokens representing
the approach keywords as grammar terminals is obtained
(e.g., from memory or another system, etc.), as follows:

terminal Token SINGLETON, INSTANTIATE, AS, LET,

OBSERVES, EXEC, DECORATE, WITH, TO;

The second phase, in an example, is done through a
method called ‘initLexerKeywords’ inside the AbcExtension
of the compiler-based approach, where the keywords are
defined, added to the compiler lexer, and then linked with
the tokens declared in the grammar, as follows:

public void initLexerKeywords(AbcLexer lexer)

{

super.initLexerKeywords(lexer);

// keywords “singleton”, “instantiate”, and “as” for the
Singleton  construct  lexer.addGlobalKeyword
(“singleton”, new LexerAction_c(new Integer(sym.
SINGLETON))); lexer.addGlobalKeyword(“instan-
tiate”, new LexerAction_c(new Integer(sym.IN-
STANTIATE)));  lexeraddGlobalKeyword(*as”,
new LexerAction_c(new Integer(sym.AS)));

/I keywords “let” and “observe” for the Observer
construct lexer.addGlobalKeyword(“observes”, new
LexerAction_c(new  Integer(sym.OBSERVES)));
lexer.addGlobalKeyword(“let”, new LexerAction_c
(new Integer(sym.LET))); lexer.addGlobalKeyword

“exec”, new  LexerAction_c(new  Integer
(sym.EXEC)));

/l keywords “decorates” and “with” for the Decorator
construct lexer.addGlobalKeyword(“decorate”, new
LexerAction_c(new  Integer(sym.DECORATE)));
lexer.addGlobalKeyword(“with”, new LexerAction_
c(new Integer(sym.WITH))); lexer.addGlobalKey-
word(“t0”, new LexerAction_c(new Integer
(sym.TO)));

// keywords for other design patterns come here

...

...
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The extensions can also include design pattern parser/
generator extensions 114 and/or design pattern grammar
extensions 116. Grammar is the set of formal rules that
define how to construct new expressions of the language
from a set of symbols. In programming languages, there are
some formal method of describing syntax such as CFG,
BNF, and EBNF. In the examples described herein, the
Aspect] grammar is extended by modifying the parser of the
language. For example, using abc and the Polyglot frontend,
the extension is done by extending the PPG (Polyglot Parser
Generator) which enables adding new and removing existing
rules to or from the language. PPG internally uses the EBNF
(Extended BNF) due to its usage in most of programming
languages and its simplicity to demonstrate the syntactic
forms.

In an aspect of the present disclosure, the compiler PPG
grammar 112 is extended with new rules (e.g., 116) in order
to capture the programmer’s application of our new con-
structs. The new constructs could be provided as simple, but
expressive, language keywords and statements. To this end,
two major grammar rules have been extended to support
parsing the new statements users may use to apply the
intended design pattern. The first extended grammar rule is
class_declaration, which will help in specifying the appli-
cation of certain design patterns to class types at the time of
application. For example, users, while declaring a class, can
add modifier, say <singleton_decl>, to the class definition to
tell the compiler that this particular class is applying this
particular design pattern. The second rule to extend is
statement_without_trailing_substatement, which permits
users to create new instances or scenarios of the desired
design pattern. For example, statements for instantiating an
object of the singleton class observing a class, and decorat-
ing a class can be supported by the extended statements
<instantiate_stmt>, <let_observes_stmt>, and <decorate_
with_stmt>, respectively.

extend class_declaration::=

<singleton_decl>
|<facade_decl>
l...
extend statement_without_trailing_substatement::=
<instantiate_stmt
>
|<let_observes_stmt>
|<decorate_with_stmt>
l...
l...

The three new statements rules are represented above as
non-terminals, which means that they involve sub-rules as
will be described below. Whenever the compiler comes
across one of these sub-statements of the newly defined
rules, it creates a new Node from the extended node factory
120 using the design pattern node extensions 118.

The node factory 120 can include the construction of all
the nodes defined in Java and Aspect] as well as the design
patterns nodes 118. Each node in the node factory 120 is
built separately to capture the creation of the desired node
based on the parameters passed from the PPG (i.e. in each
rule of the PPG there is a call to a specific node the node
factory and passing the actual parameters to that node). The
node factory of our extension is created as follows:

public interface OurExtension NodeFactory extends AJNodeFactory

public SingeltonClass SingeltonClass(Position pos,
Flags flags, String name, TypeNode superClass,
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-continued

List<TypeNode> interfaces, ClassBody body);
public SingletonInst SingletonInst(Position pos,
TypeNode ¢, List 0);
public LetObserve LetObserve(Position pos, Expr
observerName, HashMap subjectNames, HashMap
execExprs);
public LetObserve LetObserve(Position pos,
TypeNode observerType, List
subjectTypes); public DecorateWith
DecorateWith(Position pos, Expr target,
List params, Block body) ;

The above interface presents the declaration of each node
of the extension associated with its formal parameters. This
node interface is then implemented by a class that will define
the creation of those nodes as shown in FIG. 3A. Each node
will be successfully constructed if and only if it conforms to
the pre-defined syntax given in the PPG. If something goes
wrong, the compiler will complain, stop processing, and
show the necessary syntactic error messages to the screen.
Whereas, if everything goes fine, the compiler immediately
executes the next compiler pass. Example compiler exten-
sion passes are shown in FIG. 3C.

Type System

Each extension can have its own type system which might
contain new types to be added to the original type system.
In the disclosed compiler-based approach, types are intro-
duced as extensions, as shown in FIG. 3B, to the existing
base types of Java and Aspect], for example. Types are
automatically created via the type building pass at any point
of compilation the compiler comes across one of our pro-
posed constructs. The base compiler is not aware of the
created types for design pattern compilation and requires
them to be converted into proper types of the base type
system. This is actually performed during another pass of the
compiler that is carried out during compiler visits when new
nodes are created and require new type to be added to the
types stack, for example as shown in FIG. 3D.

Compiler Passes

Compiler passes are represented as a sequence of jobs that
build, check and transform the abstract syntax tree (AST). In
fact, abc (Aspect]) compiler passes are added as an exten-
sion to the polyglot compiler (Java) passes. In the same way,
the compiler passes of the design pattern extensions have
been added as extensions, e.g., as shown in FIG. 4D, to the
abc passes in order to achieve the functionality of the design
patterns implementation.

The singleton, observer, and decorator visits create new
types to be pushed in the types stack at compile time.
Therefore, the auto-generated types are built using a modi-
fied type building pass. Note that types built in the previous
type builder pass are excluded from this pass.

Design pattern compiler passes are injected into the
original abc compiler passes. For example, the parser and
type building pass must be done before the execution of each
pass. This is because observer and decorator statements
work on the pre-defined types. After that, the compiler goes
over one of the extension passes to, firstly, parse the new
syntax of it, type check it, translate it into its corresponding
Aspect] nodes, and then rebuild the new types of the created
node again before proceeding to the next abc compiler
passes, such as ambiguity remover. For example, after the
source code containing concise expressive design pattern
elements 102 is translated into expanded source code with
design pattern nodes 122, one or more additional compiler



US 10,437,572 B1

9

passes may be performed on the expanded source code with
design pattern nodes to arrive at compiled source code with
design pattern nodes 124.

FIG. 2 is a flowchart of an example method for compiling
concise expressive design pattern source code using a com-
piler extended in accordance with some implementations.
Processing beings at 202, where a design pattern lexer
supplement or extension is obtained. The design pattern
lexer extension can include items discussed above in con-
nection with 106. Processing continues to 204.

At 204, the lexer is extended using the design pattern
lexer supplement (or extensions) obtained in 202. An
example extension of the lexer is described above in con-
nection with 106 and 108 of FIG. 1. Processing continues to
206.

At 206, the grammar rules are extended. Examples of
grammar rule extension are described above in connection
with 110-116 of FIG. 1. Processing continues to 208.

At 208, the parser/generator is extended. Examples of
grammar rule extension are described above in connection
with 110-116 of FIG. 1. Processing continues to 210.

At 210, a node factory is provided with design pattern
nodes (or design pattern node extensions). For example, the
node factory 120 of FIG. 1 is extended as described above
to include design pattern nodes 118. Processing continues to
212.

At 212, source code containing concise expressive design
pattern elements (e.g., 102, and the singleton, observer and
decorator examples described below) is parsed by the
extended compiler. Processing continues to 214.

At 214, the extended compiler verifies the syntax of the
source code containing concise expressive design pattern
elements. Processing continues to 216.

At 216, the extended compiler performs semantic analysis
and checking on the source code containing concise expres-
sive design pattern elements. Processing continues to 218.

At 218, the source code containing concise expressive
design pattern elements is translated into expanded source
code including design pattern nodes. Examples of the trans-
lation are described below. Processing continues to 220.

At 220, one or more additional compiler passes are
performed on the expanded source code including the design
pattern nodes (as described above).

Singleton Design Pattern Example

The singleton design pattern is a software design pattern
that restricts the instantiation of a class to only a single
object. This is preferable when exactly one object is required
to maintain actions across the system. Singleton, as it is
shown in FIG. 4, has a single public method that returns the
sole object of the singleton class type, where the constructor
of'this class type is private so that it cannot be accessed from
other classes.

The present disclosure approach provides a very concise
construct for the singleton pattern. Using the disclosed
singleton construct, a programmer can simply write the
‘singleton’ keyword while declaring classes intended to have
only one instance. To get the sole instance of a singleton
class, another construct is provided by the disclosed
approach (called ‘instantiate’) to enable defining objects
referring to that instance. The syntax of the singleton and
instantiate constructs is given in the following EBNF nota-
tion:

»

<singleton_decl> ::= [<modifiers>] “singleton” “class” <class_id>

[“extends™ <super_class>] [“implements”
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-continued
<interfaces_list>]
<class_body>
<instantiate_stmt> ::= “instantiate” <class_id> “as” <var_decls>;

As per the disclosed syntax, a user can only apply the
singleton construct to a class, but not to the interfaces. This
can apply classes including those extending super classes
and/or implementing interfaces. This can also apply to static
classes as well as inner classes that can be declared inside
other classes. The instantiate construct can be used to define
objects that refer to the sole instance of the singleton class,
as shown in FIG. 5B, which means that the user can declare
many objects referring to the same single instance of the
classes.

The following example code snippet shows how the
disclosed approach expressively abstracts and simplifies the
use of the singleton pattern.

public singleton class Sing

instantiate Sing as s1;
public static void main(String| | args)
{

instantiate Sing as s2, s3;

}

The class Sing is preceded by the ‘singleton’ modifier,
which makes it accept only one instance to be created. To get
a reference to that instance, the ‘singleton’ modifier can be
used that gets a copy of the single instances of the class Sing
and assigns it to variables.

After parsing the ‘singleton’ class declaration and match-
ing it with the given syntax of the construct, the compiler
then moves into other compilation passes that apply the
semantics of the construct. On the other hand, the ‘instan-
tiate’ statement is parsed by the extended compiler, checked
syntactically and semantically, and then translated to a
proper concrete implementation of the singleton pattern
(e.g., an expanded version of the source code for the
singleton pattern).

In the variable scoping compiler pass, the compiler works
on ‘instantiate’ statements to verify that the singleton class
being used is within the scope and could be accessed. In
addition, instantiating objects with similar variable names in
the same scope is normally not permitted in the base
compiler and in the extensions to the compiler as well.
Therefore, the disclosed technique inherits this functionality
from the base class and applies it to the instantiation of all
singleton copies.

In the type checking compiler pass, the extended compiler
checks whether the ‘singleton’ keyword is used as a modifier
of a class declaration (excluding interface declaration). If
this is the case, the extended compiler moves on to the next
pass; otherwise, it issues a syntax/semantics error. More-
over, abstract classes cannot have instances, and declaring
them with the ‘singleton’ modifier will make a conflict in the
semantics. Thus, the extended compiler takes this issue into
account to help guarantee the avoidance of such a conflict.

If all previous checks are successful, the compiler con-
verts the extended singleton nodes to their corresponding
base nodes so they are normally passed by the base compiler.
For example, the code generated from the example singleton
application given above is show as follows:

public class Sing

{

private static Sing singlelnstance=new Sing( );
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private Sing( ) { }
public static Sing getlnstance( ){

return singlelnstance;

public static void main(String| | args)

{

Sing s1=Sing.getlnstance( ); Sing
s2=Sing.getlnstance( )R Sing s3=Sing.
getlnstance( );

}

}

It can be seen that the disclosed approach automatically
generates the exact implementation of the class applying the
singleton pattern. This generated code is considered to be
error-free and semantically correct. Similarly, the creation of
instance copies of that class are converted into their corre-
sponding statements that return the sole instance of the class.
Each instance variable is created using a separate statement,
even if there is a single ‘instantiate’ statement with multiple
objects.

In terms of AST nodes, the singleton class declaration
node is translated to a typical class declaration node along
with additional sub-nodes in its body, as shown in FIG. 5A.
The additional nodes are concerned with the creation of the
sole instance of the class and a public static method return
that instance, in addition to making a private constructor of
the class so that it cannot be accessed directly to prevent the
creation of other instances.

As shown in FIG. 5A, the instantiation construct is also
translated into a corresponding set of statements including a
variable declaration and a method call to the publicly
accessible method of the singleton returning the sole
instance of the singleton class. For the case of having an
instantiation of multiple copies of the single instance, mul-
tiple statements will be created, each per one instance copy.
Observer Design Pattern Example

The observer design pattern allows monitoring changes in
some components of the program, called subjects, to notify
other parts of the program, called observers. It consists of
two main components: subjects and observers. In general,
the observer pattern may define a many-to-many depen-
dency between subjects and observers, in which changes in
the states of subjects cause all their respective dependents
(i.e., observers) to be notified and updated automatically.

Typically, however, the observer pattern represents the
case in which a subject maintains a set of observers, and
notifies them whenever it has changes in its state (i.e., one
subject —many observers). This case is actually limited to
one scenario in which the association of observers to sub-
jects is made on basis of subjects. In other words, observing
a list of subjects by an observer requires each of these
subjects to utilize an individual observing protocol contain-
ing a single observer in its list. An alternative way to
implement such a case would be to have another observing
protocol that can associate a list of subjects for any inter-
ested observer (i.e., an observer—oriented protocol).
Another problem of this implementation is the instance-level
application in which every instance of an observer class has
to explicitly be assigned to the observed subject. This could
be better achieved using a class-level association of observ-
ers to subjects. A subject can be observed by a class, and then
all instances of that class will implicitly be assigned to the
list of observers of that subject.

FIG. 6A demonstrates a classification of the different
scenarios of using the observer design pattern, in which
small shapes are instances, and big shapes are classes. Some
implementations of the observer pattern in Aspect] (com-
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pared with that in Java) are based on Aspect] constructs that
improve modularity properties (see Hannemann J, Kiczales
G. Design pattern implementation in Java and Aspectl].
ACM Sigplan Notices, vol. 37, ACM, 2002; 161-173, incor-
porated herein by reference). Modularity is enhanced by
localizing pattern implementation to make it reusable, main-
tainable and composable using the powerful aspect-oriented
crosscutting facilities (Mehmood A, Jawawi D N. Aspect-
oriented model-driven code generation: A systematic map-
ping study. Information and Software Technology 2013;
55(2):395-411 and Cacho N, SantdA“Z’anna C, Figueiredo
E, Dantas F, Garcia A, Batista T. Blending design patterns
with aspects: A quantitative study. Journal of Systems and
Software 2014; 98:117-139, both incorporated herein by
reference). In the example below, the Aspect] implementa-
tion is used as a back-end implementation of example
constructs.

The observer pattern construct is designed to be as
abstract and modular as it could possibly be while main-
taining high accessibility to programmers and users. More-
over, the construct allows applying all possible scenarios of
the observer pattern expressively with the least amount of
code. Its syntax is defined using the following EBNF nota-
tion:

<LetObserve>::= “let” <annotated_id_list>
“observe” <extended_id_list>

.2

[“exec” <method_invocation™>] *;

The observer construct consists of three parts: (1) a list of
one or more observers specified by a comma-separated list
of class and/or object identifiers given by <annotate-
d_id_list>; (2) a list of one or more subjects given by
<extended_id_list> specified by a comma-separated list of
any combination of class and object identifiers and attribute
names or even the wildcard (*) to refer to all attributes
within the subject to be observed; and finally (3) a single
optional notification method given by the <method_invoca-
tion> non-terminal. Each of the two non-terminals <anno-
tated_id_list> and <extended_id_list> has its own produc-
tion rules defined in the extension (as shown below). The
<method_invocation> and <name> non-terminals are
already defined in the Java 1.2 parser for CUP employed by
abc. The production rules that define the non-terminal
<annotated_id_list> are given as follows:

<annotated_id_list>::=<id>{*"<id>}

<id>::={“class”<name>|<name>}

where the class keyword is used to distinguish between
class and object identifiers (especially when declared with
the same names). The non-terminal <extended_id_list>
defines an extension to the non-terminal <id>. This exten-
sion allows programmers to assign subject names, determine
certain attributes of them to observe, or use the wildcard (*)
to refer to all attributes within a subject to be observed, as
follows:

<extended_id_list>::=<ext_id>{*, <ext_id>}

<ext_id>r=<id>[“(’(“*I<attrib_list>) “)”]

<attrib_list>::=<name>{*,’<name>}

As an example statement that can be generated by this
syntax, the following statement:

let screenl, class Log observe linel(length), class

Point(*);

which sets up an object screenl and a class Log as
observers for changes in length attribute of object linel, and
any change in state of any object of class Point. Such
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statements that can be generated by this syntax can be
annotated as ‘let-observe-exec’ statements.

To show the implementation of the observer construct and
how it can be applied, three Java classes are defined and
several instances of them in Table I: Line and Point as
subjects while Screen as an observer. In the Application
class, some instances of these classes are created to utilize
them in the instance-level application of the construct. Some
scenarios of the observer pattern require all instances of a
class to observe subjects (i.e., class-level observing), while
some others need every instance to have its own observing
logic (i.e., instance-level observing). The observer construct
provides both class- and instance-level observing. The gen-
eral structure of the observer construct is as follows: observ-
ers (classes and instances) are placed after the let keyword,
subjects (classes and instances) after the observe keyword,
and, optionally, the notification method after the exec key-
word.

TABLE 1

Four Java Classes: Two Subjects, An Observer, And An Application

First Subject Class Second Subject Class

class Line { class Point {
Color color; int X, y;
int length; void setPos (int x, int
void setLength(int y) { this.x = x;
len) { this.length = this.y =y; }

len; }
void setColor(Color
¢) { this.color = ¢;
Observer Class

class Screen {
public void resize(int len) {
System.out.println(“Resizing
with the new length: ” + len); }
public void display(String str) {
System.out.printIn(str); }

Application

Line line = new Line( );
Point point = new Point( );
Screen screenl, screen2, screen3 = new Screen( );

In general, the construct can directly support the appli-
cation of all the scenarios of the observer pattern as shown
in FIG. 6 A (with both: class-level and instance-level observ-
ing). In its current implementation, however, scenarios
involving mixed usage of instance- and class-level observ-
ing can be specified by multiple separate ‘let-observe-exec’
statements, rather than a single statement.

The class-level observing can be applied as follows:

let class Screen observe class Line, class Point;

In this kind of observing, programmers can indicate that
one class is observing a subject class or a set of subject
classes. Consequently, all instances of the observing class
will be notified when any instance of the subject(s) has state
changes. This application shows a case of the class-level
version of Multiple Subjects-Multiple Observers scenario
that is applied using only one statement.

The observing logic in the instance-level version of the
observer pattern is accomplished instance-wise. This means
that each constructed object of the observing class may
observe various subjects with a different number of attri-
butes of each subject. One form of this kind of observing is
to observe a single attribute of a single subject, as follows:

let screenl observe line(length) exec resize(length);
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This case refers to the Single Subject-Single Observer
scenario in which the programmer has to specify the observ-
ing instance, the subject and the notification method that will
receive the change of the state of the specified attribute of
the subject and send it directly to the corresponding
observer. Another form is to observe multiple attributes of
single subject by one observing instance. This form repre-
sents the Multiple Subjects-Single Observer scenario with
the case of observing many attributes of a subject using one
statement, as shown in the following application:

let screen2 observe line(color,length) exec display;

The restriction of this application is that the programmer
has to define only one notification method (with a String-
type parameter) to refresh the observing instance with the
state changes of all attributes of the subject. If the program-
mer did not specify the notification method, the compiler is
built to assume that there exist a method called “display’ in
the observing class will do the job.

Last form is to observe multiple subjects with all their
attributes using one statement as shown below. This form
also represents the Multiple Subjects-Single Observer sce-
nario but now with the case of having many subjects with
either single or multiple attributes per each. This could be
accomplished by either not specifying the attributes at all, or
by using the wildcard (*) to refer to all attributes. With
respect to specifying the notification method, cases of the
previous form also apply here.

let screen3 observe line, point(*);

After parsing ‘let-observe-exec’ statements and matching
them with the given syntax of the construct, the compiler
then moves into other compilation passes that are concerned
with the construct semantics. During these passes (with the
help of the type system), the compiler starts recognizing
class types, instances, attributes and methods used in the
construct application by carrying out scoping and type-
checking operations. If such checking is passed successfully,
the compiler then carries out the code conversion (or rewrit-
ing). Otherwise, a semantic exception is generated by the
compiler.

The compiler checks the validity of each element of the
observer construct (i.e., classes, instances, attributes and the
notification method) to see whether they are not defined or
out-of-scope. The compiler in such cases will generate a
semantic exception. Another check is conducted when the
construct is applied without specifying a notification
method. In this case, a programmer has to define a notifi-
cation method named display in the observing class to be
responsible for refreshing it with the changes happened. If
such a method is not defined, the compiler will also produce
a semantic exception.

In the type checking process, the compiler is going to pick
the class included in the observer construct, and checks its
eligibility. For instance, when the programmer uses an
observer construct for primitive types, the compiler will
check and produce an appropriate alert message showing
that only classes or instances can be applied. Also, when
programmer use the instance-level observing form, then the
argument type of the notification method must match the
type of the observed attribute. For the case of applying the
construct with a default notification method, the compiler
would expect programmers to define a method called display
in observing class that accepts the changes as a String type.

After achieving all checks successfully, the compiler
starts converting LetObserve nodes into their corresponding
aspect declaration nodes that the original Aspect] compiler
can deal with. This node translation is actually executed
through a code conversion pass of the compiler where each
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‘let-observe-exec’ statement is converted into a specialized
aspect, as shown in FIG. 6B, that contains the proper
crosscutting concerns of the observing statement as shown
in Tables IIA and IIB.

TABLE ITA

A. Class-level Observing

1 protected privileged aspect ObserverProtocol 1
2 g
3 private List observers = new ArrayList () ;
4 J/:
5 protected pointcut newlnstance(Screen obs) :
6 execution(Screen.new(..)) && target(obs);
7 after(Screen obs) : newInstance(obs) {
8 observers.add(obs) ;
9
10 J/:
11 protected pointcut subjectChange ( ) : set(* Line.*) | |
12 set(* Point.*) ;
13 after( ): subjectChange( ) {
14 Iterator it = observers.iterator( ); while
15 (it.hasNext()) {
16 Screen obs = (Screen)it.next( ); obs.display(
17 thisJoinPoint.getSignature( ) +
18 “ changed. .”);
19 }
20 }
21 }
22
23
24
25
TABLE IIB
B. Instance-level Observing
1 protected privileged aspect ObserverProtocol_2
2
3 private Screen obs;
4 public void addObserver(Screen obs) { this.obs = obs;
s
6 J/:
7 public interface Subject { }
8 declare parents: Line implementsSubject; protected pointcut
9 subjectChange(Subject s) :
10 (
11 set(* Line.length)
12 ) && target(s);
13 after(Subject s): subjectChange(s) { obs.resize(((Line)
14 s) .length);
15
16 }
17
18
19
20
21

Every auto-generated aspect is assigned a name of the
form ‘ObserverProtocol_#’, where the hash symbol refers to
a sequence number that will be assigned for each auto-
generated observing aspect. The newly generated node (i.e.,
the aspect declaration) is created outside the class that
contains the application of the observer construct. Indeed,
aspects generated for class-level observing purposes have a
different implementation style from the ones used for
instance-level.

Class-Level Observing: As shown in Table II-A, an aspect
is generated for the ‘let-observe-exec’ statement (1). This
aspect implements the observing logic for all instances of
the supplied observer class in the statement. Therefore, a list
of observers (Line 3) is employed to hold a reference copy
for every newly created object of that observer class. Object
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construction joinpoints are crosscutted using the pointcut
declared in Lines 5-6 and are advised in Lines 8-10. When-
ever a subject has changes on its associated attributes, the
subjectChange pointcut (declared in Lines 12-14) will be
executed. Consequently, every instance of that observing
class will be notified (this task is accomplished by the advice
declared in Lines 16-24). After a successful generation of the
desired aspects, the compiler replaces ‘let-observe-exec’
statements by empty statements (i.e., semicolons ;).

Instance-Level Observing: In instance-level observing, an
aspect is also generated for the ‘let-observe-exec’ statement
(2) as shown in Table II-B. This aspect has only one observer
field (Line 3) that holds a reference copy of the observing
instance that will be assigned via the addObserver method,
which will be invoked at the client application (In particular,
at the line(s) where the ‘let-observe-exec’ statement is
written in the source code). Once the subject has changes in
its attributes, the subjectChange pointcut declared in Lines
13-16 is executed. As a result, the observing instance is
notified (the advice declared in Lines 18-20 will do this task)
using the notification method that was already associated
with the statement of the observer construct. In addition, this
aspect has a public Subject interface (Line 9) that will be
implemented by all observed (Subject) classes. This inter-
face can then used in place of subject classes to capture
changes of any subject implementing it. After generating
this aspect successfully, the ‘let-observe-exec’ statement is
replaced by a method-call statement, as follows:

ObserverProtocol_2.aspectOf( ).addObserver(screenl);
Decorator Design Pattern Example

The decorator pattern is a pattern that performs additional
actions on certain objects. It has several advantages over
subclassing (i.e. inheritance) as the extra actions and objects
can be added or removed per object at runtime. Also, adding
more than one decoration action is easier than subclassing,
which may cause a subclasses explosion. In addition, the
order of the decorations can be important when one deco-
rator is needed to be implemented before another, and
resolving this issue using subclassing is somewhat difficult.
The decorator pattern allows such priority to be defined
easily.

Like the observer pattern, in the disclosed extension,
provided is a more abstract and modular construct that
allows applying the decorator pattern with fewer code than
Aspect], using the following EBNF notation:

<DecorateWith>::= “decorate” <class_id> “.” <method_declaration>
“with” <block> [ “to” <object_ids_list> “;” ]

Using this syntax, a programmer can either decorate all
objects of a certain class (class-level decorating) or specific
instances of the class (instance-level decorating). In both
cases, the decorator pattern decorates a specific method of
the class (i.e., to decorate N methods, N of DecorateWith

5 statements should be applied).

60

65

By following the decorator construct syntax, the program-
mer can apply it as shown in Listing 1. In this example, the
decorator construct, DecorateWith, is applied to two differ-
ent display methods of the Screen class. The first one accepts
a single String parameter, while the other accepts two String
parameters.

1 // Class-level Dollar Decorator

2 decorate Screen.display(String s) with {
3 s = “$88” + 5 + “$$$7;

4 ¥
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-continued

5 /I invoke the decorated method

6 screenl.display(“111”); // the decorated version
7 screen2.display(“222”); // the decorated version
8 screen3.display(“333”); // the decorated version
9 J/:

10 // Instance-level Star Decorator

11 decorate Screen.display(String fn, String In) with {
12 fn o=« #%% > 4 g

13 In = In 4% *** > ;

14 } to screenl, screen2;

15 // Instance-level Bracket Decorator

16 decorate Screen.display(String fn, String In) with {
17 fm==[[[”+fn

18 In=mIn+“1]1";

19 } to screenl;

20 /I invoke the decorated method

21 screenl.display(“aaa”, “bbb™); // both [ ] and * decorators
22 screen2.display(“cee”, “ddd™); // only * decorators
23 screen3.display(“eee”, “fff”); // un-decorated version
24

Listing 1

Applying the class-level decorating is shown in Lines 2-4
of Listing 1 by decorating the method display in the Screen
class with a dollar decoration. Doing so, the programmer can
decorate one method of one class in an expressive way.
Firstly, the class should be specified, then the target method
separated by a dot delimiter. In this case, all instances of this
class will be decorated, which also reduces the implemen-
tation overhead. Whenever the display(String) method is
invoked by any object of the Screen class (as shown in lines
6 and 8), the associated decoration will be applied. Hence,
instead of printing the strings ‘111°, ‘222” and ‘333’, the
program will print the decorated versions of these strings,
which appear like $$$111$88, $$$22288$ and $85333$$8,
respectively.

Instance-level decorating has a similar structure to the
class-level decorating. The difference is that objects
intended to be decorated should be specified in the construct.
The first demonstration of the Instance-level decorating is
given in Lines 11-14 of Listing 1 by applying a star
decorator to the String parameter of the display method, and
the target objects are: screenl and screen2. The second one
(Lines 16-19) is similar, but with a bracket decoration and
only applies for the object: screenl. Decorating per instance
does not exist in the original Aspect] implementation of the
decorator pattern introduced by Hannemann and Kiczales.
This limitation is resolved in the disclosed technique and
extension, as this feature is provided by storing reference
copies of the decorated objects in the auto-generated aspect.

Invoking the display method with two String parameters
is expressed in Lines 22-24 of Listing 1. The display method
in screenl is decorated with both the star and the bracket
decorators; so, it will print the double decorated version of
the strings (i.e. ‘[[[*** aaa bbb ***]]]"). The application
order (precedence) of the decorators is discussed later.

The next process after identifying the syntax is specifying
its meaning (i.e. semantics). The semantics passes come
after the syntax parsing pass of the compiler. The compiler
in these passes is going to do variable scoping, type check-
ing and followed by rewriting. The latter will be reached if
the former are semantically approved successfully.

The compiler checks where the decorated class (or object)
is already defined, and the method intended to be decorated
exists in that class and also have the same number (or type)
of arguments as specified in the construct. In addition, the
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body of the decorator construct should only access the local
variables declared inside it, global variables are not allowed
to be used. Furthermore, an empty body implies an empty
decoration.

In the type checking process, the compiler picks up the
types included in the decorator construct, and checks their
eligibility. The first thing that should be conformed is that
the decorator construct is applied to class types. Then,
conforming that the type of instances specified in the deco-
rator construct matches the class type of the decorated
method.

The compiler is now ready to convert the DecorateWith
node into a corresponding Java-Aspect] node, as shown in
FIG. 6C, based on the information provided. An aspect
declaration node named DecoratorProtocol will be gener-
ated to involve the concrete decorating process. Similar to
the observer pattern, every decorate-with-to statement inside
the source code will be converted into a specialized aspect
that contains the cross-cutting concerns of the Java program
as shown in Table III. All decorator aspects will have the
name ‘DecoratorProtocol_#’, where the hash symbol repre-
sents a sequence number assigned per each decorator con-
struct.

TABLE IITIA

Auto-Generated Aspect for Decorator Pattern — Class-level

A. Class-level Decorating

1 protected privileged aspect DecoratorProtocol 1
2

3 protected pointcut decoratedMethod

4 (String s) :

5 call(* (Screen).display(String)) &&
6 args(s);

7 void around (String s):

8 decoratedMethod(s) {

9 s=“$88 7 + 5+« $8$ 7;
10 this.proceed(s);
11
12 }
13

As shown in Table III (A), one aspect will be generated
for each class-level decorator construct. This aspect declares
a general pointcut (Lines 3-6) that captures the method-call
joinpoints by any object of the class specified in the con-
struct. When the method call happens, the around advice
(Lines 8-12) will decorate the corresponding arguments of
the method, and then proceed to the method call instantly.
After that, the DecorateWith nodes will be replaced by
empty statements (i.e. semicolons “;’).

TABLE IIIB

Auto-Generated Aspect for Decorator Pattern — Instance Level

B. Instance-level Decorating

1 protected privileged aspect DecoratorProtocol 2
2 7
3 private List decs = new ArrayList( );
4 public void addDecorator(Screen dec) {
5 decs.add(dec);
6
7 protected pointcut decoratedMethod
8 (String s, Screen dec) :
9 call(* Screen).display(String)) &&
10 args(s) &&
11 target(dec);
12 void around (String s, Screen dec):
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TABLE IIIB-continued

Auto-Generated Aspect for Decorator Pattern — Instance Level

B. Instance-level Decorating

decoratedMethod(s, dec) {

if(decs.contains(dec)) {
B N

this.proceed(s, dec);

As shown in Table I1I (B), one aspect will be generated for
each instance-level decorator construct. This aspect main-
tains a list (Line 3) that holds reference copies of the
instances associated with the pattern construct. The decora-
tion registration is achieved by the addDecorator method
(Lines 5-7) which will be invoked at the client application.
Whenever the decorated method is invoked by an object of
the decoration class, the decoratedMethod pointcut (Lines
8-12) is fired and, consequently, the around advice will
check the existence of the calling object in the list, Lines
14-20. If the target object is considered for decoration, then
the corresponding arguments of its method will be decorated
(Lines 16-18), and then proceed to the method call instantly
(Line 19). Otherwise, the original (un-decorated) method
will be proceeded to. The DecorateWith nodes will be
replaced by method-call statements for each decorated
instance, as follows:

DecoratorProtocol_2.aspectOf( ).addDecorator(screenl);

DecoratorProtocol_2.aspectOf( ).addDecorator(screen2);

It is required in the decoration process to determine the
precedence of the decorators. This means that the decorators
should be applied in a certain order. The precedence depends
on the declaration order of the decorators and so that the
decorator that is declared first in the source code has the
highest precedence and, thus, will be applied first.

An issue of implementation overhead is faced by the
traditional implementation of design patterns (e.g., using
OO or AO facilities) as the programmer will focus on
implementing design patterns correctly in addition to his
functional code. This issue is resolved in the disclosed
compiler technique as the programmer can save time and
space by applying the pattern immediately without the need
for building the concrete implementation. Instead, in the
disclosed approach, the concrete implementation of the
pattern is automatically generated by the extended compiler
and is applied as the programmer needs.

The use of language extensions, as described herein, can
lead to shorter implementations than previously proposed
implementations respect to lines of code. For example, for
the application of the Observer pattern example presented in
section 4, the effective number of lines of code is 1 for both
class-level and instance-level versus 16 for class-level and
18 for instance-level in Aspect]. Similarly, for the Decorator
pattern example in Listing 1, the effective number of lines of
code is 3 for both class-level and instance-level 10 for
class-level observing and 18 for instance-level observing in
Aspect]. For the case declaring a class, the construct has
only 1 line of code compared with 5 using the conventional
approach, while 1 line of code is needed for instantiation of
n instance copies compared n lines of code using the
conventional approach.

Modularity in the disclosed approach is provided by
separating the implementation of design patterns from the
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implementation of the actual logic of the application. In
addition, the actual implementation of such patterns is not
visible to the programmer and it is isolated from one
application to others. This allows programmers (at different
clients) maintain, modify and alter their applications of
design patterns in a modular and easy way.

The disclosed technique can be implemented as an
Aspect] extension which summarizes code in few-keyword
constructs, similar to a meta-programming language. Addi-
tionally, the disclosed compiler can auto-generate aspects
according to the information provided as parameters by the
proposed constructs, adapted from the parametric aspects.
Although the example described is an Aspect] based exten-
sion, it can provide the instance-level advising feature which
is inspired from classpect model introduced in Fos (see
Rajan H, Sullivan K. Classpects in practice: A test of the
unified aspect model. Technical Report, Citeseer 2005,
incorporated herein by reference).

The syntax of design patterns in the disclosed compiler-
based technique is clear, concise and expressive in a way
that it does not require importing packages, building classes
(or aspects), or dealing with something missing in the design
principle of design patterns. A programmer simply needs to
learn the syntax of the pattern constructs and how they are
applied. Furthermore, the readability and writeability is
highly improved as the written code becomes shorter and
more self-explanatory. So, the absence of dependencies
makes it very easy to revise the code during maintenance.

Hannemann and Kiczales used AO constructs to improve
the implementations of the original 23 design patterns using
Aspect]. (see, Hannemann J, Kiczales G. Design pattern
implementation in Java and Aspect]. ACM Sigplan Notices,
vol. 37, ACM, 2002; 161-173, incorporated herein by ref-
erence). They provided an analysis and evaluation of the
improvement achieved to the implementation of the patterns
according to different metrics, which also have been
addressed later by Rajan using FEos extended with the
classpect construct that unifies class and aspect in one
module. (see, Rajan H. Design pattern implementations in
Eos. Proceedings of the 14th Conference on Pattern Lan-
guages of Programs, A C M, 2007; 9:1-9:11, incorporated
herein by reference). When compared with Hannemann’s
implementation in terms of lines of code and the intent of the
design patterns, Rajan observed that Eos could efficiently
outperform Aspect] in implementing 7 of the design pat-
terns, while being similar for the other 16 patterns. In
addition, the instance-level advising feature supported by
Eos classpects was another advantage over Aspect]. This
feature allows a direct representation of runtime instances
without the need to imitate their behavior. Another work was
also done by Sousa and Monteiro with CaesarJ that supports
family polymorphism. (see, Sousa E, Monteiro M P. Imple-
menting design patterns in Caesar]: an exploratory study.
Proceedings of the 2008 AOSD workshop on Software
engineering properties of languages and aspect technologies,
ACM, 2008; 6:1-6:6, incorporated herein by reference).
Their approach employs a collaboration interface that can
hold a set of inner abstract classes, and some second level
classes: the implementation and binding parts. Also, their
results demonstrated positive influence of the collaboration
interface on modularity, generality, and reusability over
those with Aspect]. Gomes and Monteiro introduced the
implementation of 5 design patterns in Object Teams com-
pared with that in Java and Aspect]. (see, Gomes J L,
Monteiro M P. Design pattern implementation in Object
Teams. Proceedings of the 2010 ACM Symposium on
Applied Computing, A C M, 2010; 2119-2120; and Mon-
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teiro M P, Gomes J. Implementing design patterns in Object
Teams. Software: Practice and Experience 2013; 43(12):
1519-1551, both of which are incorporated herein by refer-
ence). Regardless of Object Teams goals, it showed support
for implementing design patterns efficiently, and with more
than one alternative. The entire conversion of aspects into
teams was described in detail in their work. The common
issue with all these different approaches is that they suffer
from the implementation overhead and traceability problems
in concrete implementation of design patterns, as the con-
crete implementation is required to be manually written by
programmers, which may reduce their productivity.

Another approach was introduced by Zook et al. (see,
Zook D, Huang S S, Smaragdakis Y. Generating Aspect]
programs with meta-Aspect]. Generative Programming and
Component Engineering, Springer, 2004; 1-18, incorporated
herein by reference). This approach uses code templates for
generating programs as their concrete implementation,
called Meta-Aspect] (MAIJ). Development time is reduced
in this approach since it enables expressing solutions with
fewer lines of code. With respect to design patterns, MAJ
provides some general purpose constructs that reduce writ-
ing unnecessary code. However, programmers cannot
explicitly declare the use of design patterns at certain points
of the program, which may also lead to a traceability
problem.

Another trend was introduced by Bosch, who provided a
new object model called LayOM. (see, Bosch J. Design
patterns as language constructs. Journal of Object-Oriented
Programming 1998; 11(2): 18-32, incorporated herein by
reference). This model supports representing design patterns
in an explicit way in C++ with the use of layers. It provides
several language constructs that represent the semantics of 8
design patterns and can be extended with other design
patterns. Although LayOM could resolve the traceability
problem and enhance modularity, it lacks expressiveness as
it has a complicated syntax consisting of message forward-
ing processes that might confuse programmers. The dis-
closed technique provides a similar power to LayOM, but, in
contrast, the observer construct in the disclosed technique
has a more concise, expressive, easy-to-use and easy-to-
understand syntax.

Hedin also introduced a new technique that is slightly
similar to LayOM but using rules and pattern roles. (see,
Hedin G. Language support for design patterns using attri-
bute extension. Object-Oriented Technologys. Springer,
1998; 137-140, incorporated herein by reference). The rules
and roles can be defined as a class inheritance and specified
by attribute declarations. The Hedin technique permits the
extended compiler to automatically check the application of
patterns against the specified rules. However, the creation of
rules, roles, and attributes has a complex syntax that lacks
expressiveness and may require an extensive effort to learn
and build them.

Another extensible Java compiler is PEC, which was
proposed by Lovatt et al. (see, Lovatt H C, Sloane A M,
Verity D R A pattern enforcing compiler (PEC) for Java:
using the compiler. Proceedings of the 2nd Asia-Pacific
conference on Conceptual modelling-Volume 43, Australian
Computer Society, Inc., 2005; 69-78, incorporated herein by
reference). Design patterns in PEC were provided as marker
interfaces. A class must implement the proper ready-made
interface in order to conform to a certain design pattern.
After that, the PEC compiler will have the ability to check
whether the programmer follows the structure and behavior
of that pattern or not. However, the PEC compiler does not
reduce the effort needed to implement design patterns (i.e.,
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it suffers from implementation overhead). Instead, it allows
programmers to assign the desired design pattern to a given
class and then implement that pattern manually. Eventually,
the compiler will just check the eligibility of that imple-
mentation.

Budinsky et al. introduced a tool that automates design
pattern implementation. (see, Budinsky F J, Finnie M A,
Vlissides ] M, Yu P S. Automatic code generation from
design patterns. IBM Systems Journal 1996; 35(2):151-171,
incorporated herein by reference). Each design pattern has a
certain amount of information like name, structure, sample
code, when to use, etc. The programmer can supply infor-
mation about the desired pattern, then the implementation
(in C++) will be generated automatically. This approach
allows programmers to customize design patterns as needed,
but the modularity and reusability is missed, and it suffers
from the traceability problem as well.

The disclosed compiler approach for implementing and
applying design patterns in programming languages facili-
tates the implementation of design patterns in an expressive
and intuitive manner. The example described is a language
extension (Java-Aspect] extension using abc) that provides
new constructs with concise application of the singleton,
observer, and decorator design patterns. The resulting com-
piler generates the entire concrete implementation of design
patterns automatically. As a result, this compiler extension
enables the Java and Aspect] compilers to recognize the
explicit application of any scenario of design patterns, and
implement the proper action accordingly. In addition, the
disclosed approach provides features address some previ-
ously identified issues in the literature.

Supporting different levels of applications of the con-
structs helps programmers decide where and how to apply
constructs. The class-level application is beneficial if all
objects of a certain class are required to have the observing/
decorating facilities, whereas instance-level application is
useful when not all objects need the class properties, or
when each object needs to have its own functionality.

Some implementations of the disclosed compiler
approach permit design patterns to be applied and used using
simple, intuitive, and easy-to-use constructs as a language
extension. This approach is applicable to all kinds of design
patterns, including creational, structural, or behavioral, to
facilitate their application and usage by programmers. (see,
Vlissides J, Helm R, Johnson R, Gamma E. Design patterns:
Elements of reusable object-oriented software. Reading:
Addison-Wesley 1995; 49:120, incorporated herein by ref-
erence). The disclosed compiler based approach includes a
process of translation and a compiler extension approach
that includes performing process stages that are applicable to
other design patterns beyond the examples discussed herein.

The disclosed compiler based technique is applicable, at
least, to the three categories of the 23 most commonly used
design patterns (Creational: Singleton, Prototype, Builder,
Factory Method, or Abstract Factory; Structural: Decorator,
Adapter, Bridge, Composite, Facade, Flyweight, or Proxy;
and Behavioral: Observer, Visitor, Mediator, Iterator, Inter-
preter, Command, Chain of Responsibility, State, Strategy,
Template Method, or Memento). As described herein an
example implementation was applied to one pattern of each
category: Singleton from the creational category, Decorator
from the structural category, and Observer (the already
published one) from the behavioral category, for illustration
purposes. The disclosed compiler-extension technique could
support all three categories of design patterns by providing
an appropriate syntax for each design pattern in these
categories. To support a certain design pattern using the
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disclosed technique, one would define appropriate syntax
(with the desired keywords) representing how programs
should use that pattern in an expressive manner, and then
follow the process model described in the present disclosure
to add it as an extension to an either object-oriented-based
(e.g., Polyglot) or aspect-oriented-based compiler (e.g.,
abc).

The disclosed technique is applicable as a compiler exten-
sion, which facilitates embedding the design pattern con-
structs within any programming language without requiring
users to download additional libraries. Known conventional
approaches are not implemented as compiler extensions. In
contrast, known conventional approaches are either imple-
mented as separate compilers, tools, or libraries that may be
difficult for programmers to link into production code.

The disclosed technique removes a need for programmers
to be aware of how the design patterns are implemented.
Using the disclosed technique, a programmer need only
know the syntax and apply the pattern of choice, which
permits the programmer to focus more on production code
rather than implementing the code for design patterns and
linking the different classes and interfaces associated with
the design pattern. This also makes the process less error-
prone and easier to optimize the implementation in the
back-end of the compiler. In some conventional approaches,
programmers may need to have knowledge about the dif-
ferent classes, interfaces, or aspects before applying a design
pattern. In addition, the programmers may need to customize
the concrete implementation of the design pattern to fit a
given application.

The disclosed technique could be adapted to any object-
oriented programming language provided the language
includes an extensible compiler for the language. In addi-
tion, in the disclosed technique, the concrete implementation
(i.e., translated code) of the design patterns constructs could
be object-oriented or aspect-oriented. This does not affect
the simplicity and expressiveness of the approach as the
front-end constructs will be the same. Some conventional
approaches for a given language may not provide applica-
bility to other languages.

The disclosed technique is flexible in that the technique
permits developers (e.g., who may need to support new
design patterns in the extensible compiler) to choose what-
ever keywords and syntax they prefer to make the imple-
mentation of their desired patterns as easy-to-use as possible
for the end programmers. Furthermore, the application of
design patterns in the disclosed technique could be done
using single statements with various options allowing dif-
ferent scenarios to be implemented. In some conventional
approaches that allow having design pattern as language
constructs, the syntax may be significantly more compli-
cated and not easy to follow, as the syntax may have been
designed using a set of layer types and they are fixed and
need to be applied as they were designed. In the disclosed
technique, developers can supply their own syntax of a
design pattern and define as many scenarios as desired of its
application. Programmers, on the other hand, can have
flexible constructs to apply a design pattern, with the ability
of passing desired options as parameters.

The disclosed technique is not designed to detect or
identify design patterns as some of the conventional
approaches do. Instead, the disclosed technique supports the
implementation and application of design patterns in a
concise, intuitive, and expressive manner. Therefore, imple-
mentations of the disclosed technique can assist with detec-
tion techniques by permitting a user or system to search for
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specific construction of a design pattern rather than looking
for patterns to infer their existence in the source code.

Design patterns using the disclosed technique could be
applied in a clear, concise, and expressive manner, without
the need to import additional packages, create classes (or
aspects), or missing the design principle of design patterns.
With the disclosed technique, a programmer simply imple-
ments a design pattern by constructing an appropriate syntax
for the design pattern and defining how it is going to be
applied and executed (i.e., semantics). As well, the read-
ability and writeability may be significantly improved as the
written code becomes shorter and more self-explanatory.
Hence, the absence of dependencies makes it easier to revise
the code for the sake of maintenance. Moreover, it can
strongly ease the detection of design patterns in source code,
since detection techniques will have to search for specific
keywords to identify where a certain pattern is applied/used.
In summary, the readability, writeability, modularity of
design patterns are all enhanced using the disclosed tech-
nique.

Another advantage of the disclosed technique is that it
may help programmers decide where and to what level
design pattern constructs are applied. The class-level appli-
cation is beneficial if all objects of a certain class are
required to apply the design pattern, whereas instance-level
application is useful when not all objects need the class
properties, or when each object needs to have its own
functionality.

With almost all conventional approaches for implement-
ing design patterns, programmers need to be aware how to
implement design patterns. In other words, programmers
participate in the process of linking classes and methods
with each other and to define certain interfaces and helper
methods to achieve the purpose of the implemented design
patterns. However, in the present approach, programmers
simply use design pattern constructs to link between the
different program components in an intuitive way. In con-
trast, “design pattern constructs” (i.e., LayOM; see J. Bosch.
“Design Patterns as Language Constructs.” Journal of
object-oriented programming”. 1998; 11(2)) are compli-
cated and require programmers to be aware of other lan-
guage components, such as states, categories and layers
while implementing design patterns. Such conventional
approaches are based on C++ compilers and do not disclose
improvements related to design pattern implementation or
program performance.

Design patterns may be error-prone if the underlying code
is written by users. In addition, when users implement such
design patterns, performance issues are of lesser importance
and trend towards lower productivity as they deviate from
presentation of functional code to the design pattern code.
The present approach allows programmers to focus on
writing functional code while using only a single expressive
constructs for implementing a certain design pattern.

Having much design code written by programmers
requires more disk space, as programmers may need to clone
and scatter design pattern code in different classes and
methods of a program (i.e., thereby lacking modularity).
This by itself requires more maintenance. Even if it was
possible to increase the level of modularity in implementing
design patterns, the present design pattern constructs are of
higher levels of modularity since they represent recogniz-
able units of the program. Reuse in different parts of the code
is independent and they do not affect one another. The
present design pattern constructs also require less disk
space, since they are transformed into concrete design
pattern code at the compile time.
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Design pattern detection is known to be a challenging
problem in the literature (see D. Heuzeroth, T. Holl, G.
Hogstrom, W. Lowe. “Automatic design pattern detection.”
In 11th IEEE International Workshop Program Comprehen-
sion, 2003 (pp. 94-103)) since tools need to identify features
or semantics of design patterns in the source code and may
use machine learning and approximation methods to help in
deciding whether a design patterns implementation exists in
a certain class or method. However, the present approach
makes it easy for design pattern detection tools since they
would only need to search for our specific recognizable
constructs and produce highly accurate identification results.

As a Java compiler extension, the present approach is
portable and can be compatible with all environments that
support the Java language runtime, which works in almost
all operating systems. In addition, the present approach is
extensible by itself, which means developers and researchers
can add desired design patterns to the compiler extension
using the methodology presented in the disclosure.

The cost of implementing a compiler extension in abc
(e.g., with Polyglot (see N. Nystrom, M. R. Clarkson, A. C.
Myers. “Polyglot: An extensible compiler framework for
Java”. In International Conference on Compiler Construc-
tion, 2003 (pp. 138-152).) as a frontend) is known to be of
minimal overhead since the code required to implement an
extension to the Java compiler is fairly simple and modular
(see P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
J. Lhotak, O. Lhotak, O. De Moor, D. Sereni, G. Sittam-
palam, J. Tibble. “abc: An extensible Aspect] compiler.” In
Transactions on aspect-oriented software development I,
2006 (pp. 293-334)). Transforming the code of the present
design pattern constructs is also efficient since abc employs
a sophisticated program analysis and a variety of optimiza-
tion methods to ensure correctness and efficiency of code
transformation using the Soot backend (see R. Vallée-Rai, E.
Gagnon, L. Hendren, P. Lam, P. Pominville, V. Sundaresan.
“Optimizing Java bytecode using the Soot framework: Is it
feasible?”. In International conference on compiler con-
struction, 2000 (pp. 18-34)). Soot’s program analysis allows
removing unnecessary checks and initialisations from the
program before generating the Java bytecode, which
enhances the program’s performance at runtime. Therefore,
the present design pattern constructs can improve the per-
formance of computer programs, especially when compared
to conventional approaches.

FIG. 7 is a block diagram of an example processing
device 700 which may be used to implement one or more
features described herein. In one example, device 700 may
be used to implement a computer device including a com-
piler (e.g., 104), and perform appropriate method implemen-
tations described herein (e.g., one or more of 202-220).
Device 700 can be any suitable computer system, server, or
other electronic or hardware device. For example, the device
700 can be a mainframe computer, desktop computer, work-
station, portable computer, or electronic device (portable
device, mobile device, cell phone, smart phone, tablet com-
puter, television, TV set top box, personal digital assistant
(PDA), media player, game device, wearable device, etc.). In
some implementations, device 700 includes a processor 702,
an operating system 704, a memory 706, and input/output
(I/O) interface 708.

Processor 702 can be one or more processors and/or
processing circuits to execute program code and control
basic operations of the device 700. A “processor” includes
any suitable hardware and/or software system, mechanism
or component that processes data, signals or other informa-
tion. A processor may include a system with a general-
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purpose central processing unit (CPU), multiple processing
units, dedicated circuitry for achieving functionality, or
other systems. Processing need not be limited to a particular
geographic location, or have temporal limitations. For
example, a processor may perform its functions in “real-
time,” “offline,” in a “batch mode,” etc. Portions of process-
ing may be performed at different times and at different
locations, by different (or the same) processing systems. A
computer may be any processor in communication with a
memory.

Memory 706 is typically provided in device 700 for
access by the processor 702, and may be any suitable
processor-readable storage medium, e.g., random access
memory (RAM), read-only memory (ROM), Electrical
Erasable Read-only Memory (EEPROM), Flash memory,
etc., suitable for storing instructions for execution by the
processor, and located separate from processor 702 and/or
integrated therewith. Memory 706 can store software oper-
ating on the device 700 by the processor 702, including an
operating system 704, one or more applications 710, and
messaging/chat session data 712. In some implementations,
applications 710 can include instructions that enable pro-
cessor 702 to perform the functions described herein, e.g.,
some or all of the method of FIG. 2.

For example, applications 710 can include an extended
compiler having extensions for compiling concise expres-
sive design pattern source code elements as described
herein. Any of software in memory 704 can alternatively be
stored on any other suitable storage location or computer-
readable medium. In addition, memory 704 (and/or other
connected storage device(s)) can store compiler extensions,
node factory information, and other instructions and data
used in the features described herein. Memory 704 and any
other type of storage (magnetic disk, optical disk, magnetic
tape, or other tangible media) can be considered “storage” or
“storage devices.”

1/0O interface 708 can provide functions to enable inter-
facing the processing device 700 with other systems and
devices. For example, network communication devices,
storage devices (e.g., memory and/or database), and input/
output devices can communicate via interface 708. In some
implementations, the I/O interface 708 can connect to inter-
face devices including input devices (keyboard, pointing
device, touchscreen, microphone, camera, scanner, etc.)
and/or output devices (display device, speaker devices,
printer, motor, etc.).

For ease of illustration, FIG. 7 shows one block for each
of processor 702, memory 706, /O interface 708, and
software block 710. These blocks may represent one or more
processors or processing circuitries, operating systems,
memories, 1/O interfaces, applications, and/or software
modules. In other implementations, device 700 may not
have all of the components shown and/or may have other
elements including other types of elements instead of, or in
addition to, those shown herein.

In general, a computer that performs the processes
described herein (e.g., the method of FIG. 2) can include one
or more processors and a memory (e.g., a non-transitory
computer readable medium). The process data and instruc-
tions may be stored in the memory. These processes and
instructions may also be stored on a storage medium such as
a hard drive (HDD) or portable storage medium or may be
stored remotely. Note that each of the functions of the
described embodiments may be implemented by one or
more processors or processing circuits. A processing circuit
can include a programmed processor, as a processor includes
circuitry. A processing circuit/circuitry may also include
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devices such as an application specific integrated circuit
(ASIC) and conventional circuit components arranged to
perform the recited functions. The processing circuitry can
be referred to interchangeably as circuitry throughout the
disclosure. Further, the claimed advancements are not lim-
ited by the form of the computer-readable media on which
the instructions of the inventive process are stored. For
example, the instructions may be stored on CDs, DVDs, in
FLASH memory, RAM, ROM, PROM, EPROM,
EEPROM, hard disk or any other information processing
device.

The processor may contain one or more processors and
even may be implemented using one or more heterogeneous
processor systems. According to certain implementations,
the instruction set architecture of the processor can use a
reduced instruction set architecture, a complex instruction
set architecture, a vector processor architecture, a very large
instruction word architecture. Furthermore, the processor
can be based on the Von Neumann model or the Harvard
model. The processor can be a digital signal processor, an
FPGA, an ASIC, a PLA, a PLD, or a CPLD. Further, the
processor can be an x86 processor by Intel or by AMD; an
ARM processor, a Power architecture processor by, e.g.,
IBM; a SPARC architecture processor by Sun Microsystems
or by Oracle; or other known CPU architecture.

The functions and features described herein may also be
executed by various distributed components of a system. For
example, one or more processors may execute the functions,
wherein the processors are distributed across multiple com-
ponents communicating in a network. The distributed com-
ponents may include one or more client and server
machines, which may share processing in addition to various
human interface and communication devices (e.g., display
monitors, smart phones, tablets, personal digital assistants
(PDAs)). The network may be a private network, such as a
LAN or WAN, or may be a public network, such as the
Internet. Input to the system may be received via direct user
input and received remotely either in real-time or as a batch
process. Additionally, some implementations may be per-
formed on modules or hardware not identical to those
described. Accordingly, other implementations are within
the scope that may be claimed. A number of implementa-
tions have been described. Nevertheless, it will be under-
stood that various modifications may be made without
departing from the spirit and scope of this disclosure. For
example, preferable results may be achieved if the steps of
the disclosed techniques were performed in a different
sequence, if components in the disclosed systems were
combined in a different manner, or if the components were
replaced or supplemented by other components. The func-
tions, processes and algorithms described herein may be
performed in hardware or software executed by hardware,
including computer processors and/or programmable cir-
cuits configured to execute program code and/or computer
instructions to execute the functions, processes and algo-
rithms described herein. Additionally, an implementation
may be performed on modules or hardware not identical to
those described. Accordingly, other implementations are
within the scope that may be claimed.

What is claimed is:

1. A method comprising:

obtaining a design pattern lexer supplement;

extending a lexer of a compiler using the design pattern

lexer supplement;

extending grammar rules of the compiler to include one or

more design pattern grammar extensions, wherein
extending the grammar rules includes extending a class
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declaration rule to specify which design patterns apply
to which classes at application time, wherein the
extended class declaration rule includes adding a
design pattern modifier in a class declaration that
indicates to the compiler that a class corresponding to
the class declaration is applying design pattern, and
extending a statement without trailing substatements
rule to permit creation of a new instance of the design
pattern;

extending a parser to include one or more design pattern

extensions;

providing the compiler with a node factory including one

or more design pattern nodes;

parsing source code containing one or more explicit

design pattern source code tokens using the parser and
the lexer;

verifying syntax of the source code containing one or

more explicit design pattern source code tokens using
the parser;

performing semantic checking of the source code con-

taining one or more explicit design pattern source code
tokens using the parser; and

translating the one or more explicit design pattern source

code tokens into one or more expanded design pattern
source code elements using the parser and input from
the node factory.

2. The method of claim 1, wherein the design pattern lexer
supplement includes a list of tokens representing design
pattern keywords as grammar terminals.

3. The method of claim 1, wherein the design pattern
grammar extensions include keyword definitions corre-
sponding to tokens declared in a grammar.

4. The method of claim 1, wherein the one or more design
pattern nodes include one or more of singleton nodes,
observer nodes, or decorator nodes.

5. The method of claim 1, wherein the parsing is per-
formed with a parser of the compiler.

6. The method of claim 1, further comprising performing
variable scoping of the source code containing one or more
explicit design pattern source code tokens.

7. The method of claim 1, further comprising performing
type checking of the source code containing one or more
explicit design pattern source code tokens.

8. The method of claim 1, further comprising performing
subsequent compiler passes of the expanded design pattern
source code elements to compile the source code into
compiled code.

9. A non-transitory computer readable medium having
instructions stored therein that, when executed by one or
more processors, cause the one or more processors to
perform a method comprising:

obtaining a design pattern lexer supplement;

extending a lexer of a compiler using the design pattern

lexer supplement;

extending grammar rules of the compiler to include one or

more design pattern grammar extensions, wherein
extending the grammar rules includes extending a class
declaration rule to specify which design patterns apply
to which classes at application time, wherein the
extended class declaration rule includes adding a
design pattern modifier in a class declaration that
indicates to the compiler that a class corresponding to
the class declaration is applying design pattern, and
extending a statement without trailing substatements
rule to permit creation of a new instance of the design
pattern;
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extending a parser to include one or more design pattern

extensions;

providing the compiler with a node factory including one

or more design pattern nodes;

parsing source code containing one or more explicit

design pattern source code tokens using the parser and
the lexer;

verifying syntax of the source code containing one or

more explicit design pattern source code tokens using
the parser;

performing semantic checking of the source code con-

taining one or more explicit design pattern source code
tokens using the parser; and

translating the one or more explicit design pattern source

code tokens into one or more expanded design pattern
source code elements using the parser and input from
the node factory.

10. The non-transitory computer readable medium of
claim 9, wherein the design pattern lexer supplement
includes a list of tokens representing design pattern key-
words as grammar terminals.

11. The non-transitory computer readable medium of
claim 9, wherein the design pattern grammar extensions
include keyword definitions corresponding to tokens
declared in a grammar.

12. The non-transitory computer readable medium of
claim 9, wherein the one or more design pattern nodes
include one or more of singleton nodes, observer nodes, or
decorator nodes.

13. The non-transitory computer readable medium of
claim 9, wherein the parsing is performed with a parser of
the compiler.

14. The non-transitory computer readable medium of
claim 9, further comprising performing variable scoping of
the source code containing one or more explicit design
pattern source code tokens.

15. The non-transitory computer readable medium of
claim 9, further comprising performing type checking of the
source code containing one or more explicit design pattern
source code tokens.

16. The non-transitory computer readable medium of
claim 9, further comprising performing subsequent compiler
passes of the expanded design pattern source code elements.

17. A system comprising:

one or more processors coupled to a non-transitory com-

puter readable medium having stored thereon software
instructions that, when executed by the one or more
processors, cause the one or more processors to per-
form operations including:
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obtaining a design pattern lexer supplement;

extending a lexer of a compiler using the design pattern

lexer supplement;

extending grammar rules of the compiler to include one or

more design pattern grammar extensions, wherein
extending the grammar rules includes extending a class
declaration rule to specify which design patterns apply
to which classes at application time, wherein the
extended class declaration rule includes adding a
design pattern modifier in a class declaration that
indicates to the compiler that a class corresponding to
the class declaration is applying design pattern, and
extending a statement without trailing substatements
rule to permit creation of a new instance of the design
pattern;

extending a parser to include one or more design pattern

extensions;

providing the compiler with a node factory including one

or more design pattern nodes;

parsing source code containing one or more explicit

design pattern source code tokens using the parser and
the lexer;

verifying syntax of the source code containing one or

more explicit design pattern source code tokens using
the parse;

performing semantic checking of the source code con-

taining one or more explicit design pattern source code
token elements using the parser; and

translating the one or more explicit design pattern source

code tokens into one or more expanded design pattern
source code elements using the parser and input from
the node factory.
18. The system of claim 17, wherein the design pattern
lexer supplement includes a list of tokens representing
design pattern keywords as grammar terminals, and wherein
the design pattern grammar extensions include keyword
definitions corresponding to tokens declared in a grammar.
19. The system of claim 17, wherein the one or more
design pattern nodes include one or more of singleton nodes,
observer nodes, or decorator nodes.
20. The system of claim 17, further comprising:
performing variable scoping of the source code containing
one or more explicit design pattern source code tokens;

performing type checking of the source code containing
one or more explicit design pattern source code tokens;
and

performing subsequent compiler passes of the expanded

design pattern source code elements.
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