
Enhanced Visualization of Method Invocations by
Extending Reverse-engineered Sequence Diagrams

Taher Ahmed Ghaleb
School of Computing
Queen’s University

Kingston, Ontario, Canada
taher.ghaleb@queensu.ca

Khalid Aljasser Musab A. Alturki
Information & Computer Science Department

King Fahd University of Petroleum and Minerals
Dhahran, Saudi Arabia

{aljasser,musab.alturki}@kfupm.edu.sa

Abstract—Software maintainers employ reverse-engineered se-
quence diagrams to visually understand software behavior, espe-
cially when software documentation is absent or outdated. Much
research has studied the adoption of reverse-engineered sequence
diagrams to visualize program interactions. However, due to the
forward-engineering nature of sequence diagrams, visualizing
more complex programming scenarios can be challenging. In
particular, sequence diagrams represent method invocations as
unidirectional arrows. However, in practice, source code may
contain compound method invocations that share values/objects
implicitly. For example, method invocations can be nested, e.g.,
fun(foo()), or chained, e.g., fun().foo(). The standard
notation of sequence diagrams does not have enough expressive
power to precisely represent compound scenarios of method invo-
cations. Understanding the flow of information between method
invocations simplifies debugging, inspection, and exception han-
dling operations for software maintainers. Despite the research
invested to address the limitations of UML sequence diagrams,
previous approaches fail to visualize compound scenarios of
method invocations. In this paper, we propose sequence diagram
extensions to enhance the visualization of (i) three widely used
types of compound method invocations in practice (i.e., nested,
chained, and recursive) and (ii) lifelines of objects returned from
method invocations. We aim through our extensions to increase
the level of abstraction and expressiveness of method invocation
code. We develop a tool to reverse engineer compound method
invocations and generate the corresponding extended sequence
diagrams. We evaluate how our proposed extensions can improve
the understandability of program interactions using a controlled
experiment. We find that program interactions are significantly
more comprehensible when visualized using our extensions.

Index Terms—Sequence diagram, extended notation, program
comprehension, method invocation, controlled experiment

I. INTRODUCTION

Sequence diagrams allow software maintainers to get a visu-
alized outlook of program interactions. Software maintainers
use reverse-engineered sequence diagrams for legacy systems
or when software documentation is absent, poor, or outdated.
Much research has studied the adoption of reverse-engineered
sequence diagrams to visualize program interactions [1]–[37].
However, due to the forward-engineering nature of sequence
diagrams, visualizing more complex programming scenarios
can be challenging. For example, sequence diagrams represent
method invocations as unidirectional arrows. However, in prac-

tice, source code may contain compound method invocations,
in which values/objects are communicated between callers
and callees implicitly. For example, method invocations can
be nested, e.g., fun(foo()), or chained, e.g., fun().foo().
The standard primitives of UML sequence diagrams do not have
enough expressive power to precisely represent such scenarios
of method invocations.

Prior research has assessed the use of reverse-engineered
sequence diagrams for program understanding [38]. Previous
studies proposed (i) extensions to sequence diagrams to support
more control flow scenarios [2], [9], [12], [39]–[44] and (ii) non-
standard forms of visualization of program interactions, such as
Circular Bundles [45], City Metaphor [46], and Markov Chains
& Timing Diagrams [12]. Still, previously proposed solutions
fail to visualize compound scenarios of method invocations.
Understanding the information flow between compound method
invocations enables software maintainers to perform debugging,
inspection, and exception handling operations.

In this paper, we propose extensions to sequence diagram to
enhance the visualization of compound method invocations in
Java. In particular, our proposed extensions represent (a) three
types of compound method invocations (i.e., nested, chained,
and recursive calls) and (b) lifelines that correspond to objects
returned from method invocations. We choose such types of
compound method invocations as they are widely used in
practice. We aim through our extensions to increase the level of
abstraction and expressiveness of method invocation code. We
choose to extend the standard notation rather than using another
alternative notation to make our approach more interoperable.
We use typical code examples of method invocations to
demonstrate the notation of our extensions. We use our tool
for reverse-engineering software systems [47] to generate the
extended representation of sequence diagrams used in this study.
Moreover, we conduct a controlled experiment to evaluate how
our proposed extensions can improve the understandability of
program interactions at the method level. Our results show
that the communications between program methods/objects are
more comprehensible when visualized using our extensions.

In summary, this paper makes the following contributions:

• Highlights on the limitations of reverse-engineered UML
sequence diagrams in representing program interactions.Preprint..

mailto:taher.ghaleb@queensu.ca
mailto:aljasser@kfupm.edu.sa
mailto:musab@kfupm.edu.sa

• Novel sequence diagram extensions for enhanced visual-
ization of compound scenarios of method invocation.

• A detailed demonstration of the proposed extensions using
common programming scenarios.

• A controlled experiment to evaluate the effectiveness of
the proposed sequence diagram extensions for program un-
derstandability, in comparison with the (baseline) standard
UML notation of sequence diagrams.

Paper Organization: The rest of this paper is organized as
follows. Section II presents background on sequence diagrams
and program comprehension. Section III provides a detailed
description of our proposed extensions to sequence diagrams.
Section IV describes our controlled experiment to evaluate the
proposed sequence diagram extensions for program comprehen-
sion. Section V discusses our experimental results. Section VI
discusses validity threats to our results. Section VII presents
some relevant studies in supporting program comprehension
through reverse engineering. Finally, Section VIII concludes
the paper and discusses the possible future work.

II. BACKGROUND

This section presents some background about reverse-
engineered sequence diagrams and program comprehension.

A. Program interactions as sequence diagrams
The Unified Modeling Language (UML 2.0 [48]) is the

de facto standard for modeling software behavior using
sequence diagrams. Reverse-engineered sequence diagrams can
be derived from existing source code using static or dynamic
analysis techniques [38]. They give insights of the software
behavior, which help software maintainers understand how
system objects interact with each other.

Program interactions in imperative programming languages
are represented using method invocations. The UML notation
of sequence diagrams supports representing intraprocedural
control flow of programs. Despite the added features to UML
sequence diagrams (e.g., combined fragments),1 the existing
notation still has limitations that may lead to imprecise or
wrong representations of program interactions. Such limitations
have urged prior studies to introduce more creative solutions
to visualize complex program interactions.

B. Program comprehension
Program comprehension is the activity of understanding the

static and dynamic aspects of software systems, namely the
structure and behavior [49]. Program visualization tools play
a vital role in this regards. Program visualizations display
various aspects of program structure or behavior to reduce
source code manual navigation. Prior research has evaluated
the effectiveness of visualization techniques towards program
comprehension using controlled experiments. Controlled ex-
periments maintain a set of tasks that are related to program
comprehension activities (e.g.,maintenance) [50]. Controlled
experiments are widely used to measure (i) the time invested

1https://www.uml-diagrams.org/sequence-diagrams-combined-fragment.
html)

by users to respond to the predefined comprehension tasks and
(ii) the correctness of user responses [49], [51]–[53]. Bennett et
al. [54] conducted an evaluation of the actual use of features
provided by the tools that employ reverse-engineered sequence
diagrams for representing program interactions. Xie et al. [39],
[55] conducted an empirical evaluation of UML sequence
diagrams with an extended notation for thread interactions.
However, such experiments have not assessed the positive
impact of their extended sequence diagrams towards program
comprehension using forward-engineered, rather than reverse-
engineered, sequence diagrams.

III. THE PROPOSED EXTENSIONS TO SEQUENCE DIAGRAMS

In this section, we present our proposed sequence diagram
extensions. The design principles of our proposed extensions
include: (a) the identification of the most important limitations
of sequence diagrams that hinder program comprehension;
(b) targeting most commonly used program features; (c)
maintaining simplicity while maximizing effectiveness for
program comprehension; (d) minimizing the gap with the
standard notation (i.e., reusing some notational components
while alleviating ambiguity); (e) introducing flexibility to
handle complex interactions; and (f) maintaining a design
that compatible to the standard sequence diagram rather than
as a completely separate tool.

We propose four sequence diagram extensions that capture
the compound scenarios of method invocations in Java, namely
nested calls (III-A), chained calls (III-B), recursive calls (III-C),
and returned objects (III-D). We use typical examples to
describe each extension. Our extension allow more complex
scenarios in which different types of method invocations may
overlap (e.g., nested of nested calls or chains of nested calls).
More examples of complex scenarios of our extensions can be
found in our online appendix [56].

A. Nested method calls

Method calls may compose of nested calls passed as
parameters. Program execution of such cases starts with
invoking the methods passed as parameters. After that, the
program invokes the original method call. Invoking methods
passed as parameters can either be in a left-to-right or right-
to-left order. In our case, since we use Java, left-to-right
associativity is considered. The following statement has two
nested calls: a call to the getObj method of object b is nested
with the call to the setObj method of object a;

a . s e t O b j (x , b . ge t Ob j ()) ;

The standard sequence diagram represents the above pro-
gramming statement using separate unidirectional, horizontal
arrows as shown in Fig. 1a and Fig. 1b (tool-dependent).
Although the first standard representation (Fig. 1a) simplifies
the whole statement using a single message arrow, it does
not reflect the actual number of interactions. The other
representation (Fig. 1b) shows the exact number of interactions,
but does not precisely reflect the actual interactions between
methods/objects.

https://www.uml-diagrams.org/sequence-diagrams-combined-fragment.html)
https://www.uml-diagrams.org/sequence-diagrams-combined-fragment.html)

a:A

setObj(x, b.getObj())

(a) Standard Sequence Diagram - v.1

b:B

getObj()

a:A

setObj(x, b.getObj())

(b) Standard Sequence Diagram - v.2

b:B a:A
setObj

x
getObj()

(c) Extended Sequence Diagram

Fig. 1: Nested calls notation

To resolve such a confusion, we propose a novel sequence
diagram extension that distinguishes this kind of method calls
from the other kinds of calls. This extension provides an
extended component to the standard notation of sequence
diagrams, as shown in Fig. 1b. This notation reflects the
actual communication of information with the exact number of
interactions. As shown in the figure, the method setObject
is firstly called but lastly executed. Also, the parameter x
does represent an interaction while the second parameter, the
call to the getObj method, represents a nested interaction
that is executed inside and before its enclosing method. This
methodology is also applicable to the interactions of the
return and new statements in case they involve method
calls within their parameters.

B. Chained method calls

It is common in object-oriented programming to see what
is called chained calls. Chained calls are the set of calls that
depend on each other in their execution. This means that the
object needed to call one method is returned by its preceding
method call. As an example, we provide the following chain
of calls:

a . g e t S t r i n g () . t r i m () ;

We observe that the method getString of the object a
will be called and will return an anonymous object of type
String, which will be used to call the method trim. The
standard sequence diagram deals with such calls separately,
which means that the diagram will show that these two calls
are independent and do not depend on each other (as shown in
Fig. 2a). However, it shows the exact number of interactions,
but take in mind that some tools represent the whole statement
using one message while some others only represent the first
method call of the chain.

a:A

getString()

:String

trim()

(a) Standard Sequence Diagram

a:A

getString()

trim()

(b) Extended Sequence Diagram

Fig. 2: Chained calls notation

We address this scenario by providing an extended notation
that can precisely represent the chain of the calls and the
dependence of one call on another. As demonstrated in Fig. 2b,
the extended notation is intuitively expressive and reflects the
actual flow of communication between methods and the exact
number of interactions.

C. Recursive method calls

Recursive calls are repetitive calls that make a sequence of
commands executing multiple times. Unlike loops, there is no
specific control structure in programming languages that can
indicate the presence of recursive calls. Still, recursive calls
can be captured through a careful static analysis of the program
source code. Recursion may not only occur by a call from the
method itself, but it can also occur between different methods
calling each other repetitively. For example, if method1 calls
itself, then a direct recursion happens. Also, if method1 calls
method2, and then method2 calls method1; then this is also
considered as an indirect recursion. Let’s take the following
example:

void f a c t (i n t n){
f a c t (n−1);

}
main () {

f a c t (5) ;
}

The fact method is recursive as it calls itself (assuming
that we are inside an object a of class A). In the standard
representation shown in Fig. 3a, the recursive call is represented
as a self-message, whereas self-messages may represent calling
methods of the same lifeline. Our extended notation shown in
Fig. 3b expressively depicts such a recursive call so that users
can be recognized directly from the first sight.

a:A

fact(5)

fact(n-1)

(a) Standard Sequence Diagram

a:A

fact(5)

fact(n-1)

(b) Extended Sequence Diagram

Fig. 3: Recursive calls notation

D. Objects returned from method calls

Objects in Java are created by (i) using new statements
or (ii) calling methods. The UML sequence diagram uses
lifelines to represent objects but does not show when such
objects are created. We propose to extend sequence diagrams
capture object creation using the aforementioned ways. Our
object creation extension does not introduce new notational
components to sequence diagrams but rather utilizes the existing
UML components (i.e., lifelines and arrows). Fig. 4 shows
interactions carried out in the following statement using our
proposed extension:

A a2 = a1 . ge t Ob j () ;
a2 . g e t V a l () ;

We observe that the returned value of the invoked method
getObj of the object a1 creates the lifeline a2, which is
then used to call the method getVal. On the other hand, in
the standard sequence diagram, it is not clear how and through
which integration the object a2 was created.

IV. EXPERIMENTAL EVALUATION

We define different comprehension tasks that we aim to use
for measuring the added valued by our proposed sequence
diagram extensions to improve program comprehension of
method calls. We use the Greenfoot2 Java project as a case
study for our experiment. Greenfoot includes various method
call scenarios that cover most of our extensions.

A. Research questions and hypotheses

Based on our selected case study, we define the following
research questions:

1) Does the availability of our proposed extensions to the
sequence diagram reduce the time that is needed to
achieve the comprehension tasks?

2) Does the availability of our proposed sequence diagram
extensions increase the correctness of the answers pro-
vided during those tasks?

3) Is representing programs using our proposed sequence
diagram extensions less complex and more precise than
that with the use of the standard sequence diagram?

We associate the first three research questions with three
null hypotheses, formulated as follows:

• H10: The use of our proposed sequence diagram exten-
sions does not affect the time needed to complete each
comprehension task.

• H20: The use of our proposed sequence diagram exten-
sions does not affect the correctness of responses given
during those tasks.

• H30: Our proposed extensions to the sequence diagram
represent programs in a more complex and imprecise way.

After that, we have stated the alternative hypotheses used in
the experiment, as follows:

2https://www.greenfoot.org

a1:A

getObj()

a2:A

getVal()

(a) Standard Sequence Diagram

a1:A

getObj()

a2:A

getVal()

(b) Extended Sequence Diagram

Fig. 4: Notation representing lifelines of returned objects

• H1: The use of our proposed sequence diagram extensions
decreases the time needed to complete each comprehen-
sion task.

• H2: The use of our proposed sequence diagram extensions
improves the correctness of answers given during those
tasks.

• H3: Our proposed sequence diagram extensions precisely
represent programs using a simple (i.e., not complex)
notation.

The first alternative hypothesis is motivated by the fact that
our sequence diagram extensions explicitly demonstrate method
call scenarios of the subject system. UML standard of sequence
diagrams, on the other hand, require participants to implicitly
infer method call scenarios of the system. The rationale behind
the second alternative hypothesis is the inherent precision of
our notational components used to differentiate between the
various method call scenarios. Such a hypothesis results in a
deeper understanding of program interactions at the method
level and, hence, more accurate answers. The third alternative
hypothesis is induced by the way and style our extensions are
represented. The design of the style of the extended in intended
to reflect the actual flow of information in programs using the
least number and size of components.

To test the H10, H20, and H30 hypotheses, we define a
set of comprehension tasks. Such tasks are implemented by
both a control group and experimental group. The control
group uses standard UML sequence diagrams, whereas the
experimental group uses sequence diagrams supplied with our
proposed extensions. A between-subjects design is maintained
to allow each subject to be either in the control group or in
the experimental group.

B. The object of the experiment

The system that our experiment is based on is Greenfoot,
a Java environment that simplifies the development of two-
dimensional graphical applications and is meant for educa-
tional purposes of programming languages. Generating reverse-
engineered sequence diagrams for the overall functionality
of Greenfoot will for sure result in obtaining more complex
and disappointing diagrams for the subjects to achieve the
tasks. Therefore, we have selected only a specific scenario of
Greenfoot used for browsing classes. This scenario is based
on a class called ClassBrowser, which is responsible for
drawing and laying out the classes on the user interface. The

https://www.greenfoot.org

resulting diagrams contain more than 50 method calls between
around 20 objects/classes.

We choose Greenfoot as our experimental object for the
following reasons:

• Greenfoot is an open source software project. The
availability of source code also helps in verifying and
replicating of the experiment conducted in this paper [57].

• Greenfoot is a modular software system, which enables
to perform the analysis and modeling of its method
invocation scenarios easily.

• The selected scenario of Greenfoot for our case study
encompasses all types of method call scenarios supported
by our sequence diagram extensions.

We use the Visual Paradigm3 tool to produce the reference
reverse-engineered sequence diagram using the UML standard.
In addition, we use our tool [47], [58], [59] to reverse engineer
the extended sequence diagram. Both diagrams contain the
same number of lifelines but different message lines between
lifelines. However, our extended diagram generates lifelines on
demand lifelines (i.e., at the place where a specific class/object
is used). We exported both diagrams into PDF files to allow
participants to search for certain terms or to zoom in/out while
responding to the tasks. Details about the reverse-engineered
diagrams and the experimental tasks used in our study can be
found in our online appendix [56].

C. Task design

Prior controlled experiments for program comprehension
employed a comprehension framework proposed by Pacione et
al. [50], who classified the comprehension tasks of software
visualization into nine primary activities. However, we find
that strictly following such a framework may not expose all
the capabilities of our proposed extensions. Therefore, we use
different question types in our our tasks. Each type of questions
requires a different kind of user input.

1) Category C1: Searching for the number or names of
certain program components:

• Task T1 (Recursive Calls): Write the name(s) of all
recursive methods, if any?

2) Category C2: Writing code representing a certain sub-
diagram:

• Task T2.1 (Chained Calls): Write the Java code that
corresponds to the excerpt of a sequence diagram (see
Appendix [56]:T2.1)?

• Task T2.2 (Chained Calls + Nested Calls): Write the
Java code that corresponds to the excerpt of a sequence
diagram (see Appendix [56]:T2.2)?

• Task T2.3 (Lifelines of returned objects): Write the
Java code that corresponds to the excerpt of a sequence
diagram (see Appendix [56]:T2.3)?

3https://www.visual-paradigm.com

3) Category C3: Snapping the sub-diagram representing
some certain code:

• Task T3 (Multi-Nested Calls): Identify and screenshot
the portion of the sequence diagram that reflects the
following code:

cb.quickAddClass(newClassView(
cb,newGCoreClass(Actor.class,project)));

4) Category C4: Rating diagrams produced using the
standard and extended diagrams for the same method call
scenarios.

• Task T4.1 (Chained Calls): Rate the Complexity and
Precision of a sub-diagram (see Appendix [56]:T4.1) in
representing the following code:

this.getRootPane().revalidate();

• Task T4.2 (Nested Calls): Rate the Complexity and
Precision of the sub-diagram (see Appendix [56]:T4.2) in
representing the following code:

BorderFactory.createTitledBorder(null,
Config.getString("BBworld"));

• Task T4.3 (Recursive Calls): Rate the Complexity and
Precision of the sub-diagram in (see Appendix [56]:T4.3)
in representing the following code:

void createClassHierarchyComponent(
Collection roots, boolean isRecursiveCall) {
createClassHierarchyComponent(children,true);}

For tasks of categories C1, C2, and C3, we use open-ended
questions in our tasks to make it harder for participants to guess
the answers, which generates more reliable and representative
comprehension situations. Feedback obtained from the tasks of
the category C4 is not graded further, since such tasks already
expect rating values by participants. A single evaluator awarded
points to the answers to ensure a uniform and fair grading
based on a solution model.

D. The subjects of the experiment

The subjects in this experiment are 8 PhD candidates, 12 MS
students, and 16 BS senior students. The PhD and MS students
were in the same program at the computer science department.
The resulting number of subjects is of 36 subjects. Subjects
are from 7 different different nationalities and are working on
different areas of computer science and software engineering.
All subjects have prior experience with the UML sequence
diagram but none of them has had previous knowledge about
our proposed extensions. The participation in the experiment
was completely voluntarily.

We distribute the subjects based on their knowledge of Java,
software modeling, sequence diagrams and reverse engineering.
Considering that all undergraduate students were working on
senior projects in software engineering, they were just evenly
distributed into two groups of eight students, one as control and
another as experimental. MS and PhD students were distributed
based on their experience in software engineering. We measured
participants’ experience by the kind and number of courses

https://www.visual-paradigm.com

they have taken at the software engineering program. We asked
informal questions to each subject to assess the experience
with sequence diagrams. As a result, MS and PhD students
were evenly assigned to the groups (i.e., four PhD and six MS
students per each group). In total, each group consisted of 18
students: four PhD, six MS and eight BS students.

E. Experimental procedure

We conduct our experiment through two sessions, each of
which has taken place at a computer lab in the computer science
department. Both sessions were conducted on workstations with
the same Internet connection and specifications, i.e., all of them
are of Intel Core i3 - 2.93 GHz CPUs, 4 GB RAM, and screen
resolutions of 1440 x 900. The first session involved the MS
and PhD students of both groups, whereas the second session
was for the BS students. A 5-minute recall tutorial on sequence
diagrams was given to both groups, highlighting our proposed
extensions, and how can they reflect Java code. In addition,
we conducted a 10-minutes presentation showing our proposed
extensions to the standard sequence diagram. Both sessions
were supervised, allowing the subjects to pose clarification
questions and preventing them from communication with each
other. We have been requiring subjects to motivate their answers
at all times. Subjects were encouraged to take a short break if
they started to get bored or confused.

F. Variables and analysis

The availability of our extensions for the sequence diagram
notation in the experiment is regarded as the independent
variable to the UML sequence diagram during all the tasks.

The first dependent variable is the time spent on each task
and is measured by recording the the time a user spent on
each task. In addition, we disabled the ‘Back’ button on each
page to prevent the subjects from navigating back to earlier
tasks. The second dependent variable is the correctness of the
given answers. We measured the correctness of answers using
a model answer that associates scores to each expected answer.
Two of the authors assessed the correctness of the answers.
Then, we resolved any disagreements using an open discussion
with the third author.

To test our hypotheses, we first tested the sample distributions
using the Kolmogorov − Smirnov test [60] to see whether
they are normal. In addition, we used the Levene’s test [61]
to check whether the sample distributions have equal variances.
In the cases where statistical tests passed successfully, the
Student’s t-test was used to evaluate the hypotheses. Following
our alternative hypotheses, we employed a one-tailed variant
of each statistical test. For the time as well as the correctness
variables, a typical confidence level of 95% was maintained
(α = 0.05).

G. Pilot studies

Before conducting the experimental sessions, we carried out
two pilot studies to refine several experimental parameters, such
as the number and kind of tasks, their feasibility, clarity, and the
amount of time would be required. The pilots for the control

and experimental groups were performed by one BS, one PhD,
and two MS students at the computer science department. Pilots
were also given tutorial about UML sequence diagrams and our
proposed extensions. Pilots have not participated in the actual
experiment. The results of the pilots helped us to (i) eliminate
three complicated and time-consuming tasks, (ii) change the
categories of two tasks, (iii) make the remaining tasks clearer
and easier to understand, and (iv) improve our tutorial.

V. EXPERIMENTAL RESULTS

Table I presents a set of descriptive statistics of the ques-
tionnaire results based on aggregated measurements over the
eight tasks, which are basically based on grading the answers
of participants and the time spent on each task.

Based on the individual results of each task, we observe
that our data has no outliers to be removed. However, as a key
factor for both time and correctness, we have noticed that two
subjects (one from each group) were not very interested in
conducting the questionnaire as we have noticed that they did
not respond to the provided tasks properly. For example, one of
them has written some zeros as responses for some of the tasks
of the category C2 that required writing code, while the other
has entered similar rating values for all both criteria and both
diagrams in the tasks of the category C4. Subsequently, we
disregarded the entire input provided by these two particular
subjects (i.e., we ended up with having responses of 17 subjects
from the control group and 17 subjects from the experimental
group).

A. Results of the time spent on tasks

We have started by testing the null hypothesis H10 described
in section IV-A that stated that the time needed to complete
comprehension tasks is not impacted by the availability of our
proposed sequence diagram extensions. Fig. 5a shows the total
time spent by the subjects on the first eight tasks using a box
plot. It can be also indicated from Table I that, on average,
extended diagram group required 25.20 percent less time.

The distributions of the samples are normal and they have
equal variances as well. This has been was proven by the
Kolmogorov-Smirnov and Levene tests, which have succeeded
for the timing results shown in Table I). This concludes that
Student’s t-test can be used to test H10. As presented in Table I,
a statistically significant result has been yielded from the t-test,
which is represented by the p-value of 0.0237 that is less than
0.05. The average time spent by the extended sequence diagram
group was visibly lower, which means that H10 can be rejected
in support of the alternative hypothesis H1, implying that the
use of our sequence diagram extensions could decrease the
time needed to achieve different comprehension tasks.

B. Reasons for different time requirements

There are several factors that contributed to the lower time
requirements for the extended sequence diagram participants.
First, most of program interactions are explicitly represented
using special and expressive notation, which helps in finding
certain information by just having an outlook to the provided

TABLE I: Computed statistics of the questionnaire results

Time (in minutes) Correctness (in points)
Standard Sequence Diagram Extended Sequence Diagram Standard Sequence Diagram Extended Sequence Diagram

Mean 23.81 17.81 14.40 26.80
Difference -25.20% +86.11%
Min 17.33 11.26 7 17
Max 32.82 24.80 20 30
Median 21.45 18.59 14 27
Stdev. 5.72 5.10 3.37 3.85
Kolmogorov-Smirnov 0.594 0.597 0.070 0.005
Levene F 0.6405 0.7525
Student’s t-test

df 17.76 17.69
t 2.47 -7.66
p-value 0.0237 0.0001

15

20

25

30

Standard Extended

Sequence Diagram

T
im

e
 s

p
e

n
t

(i
n

 m
in

u
te

s
)

(a) Time spent

10

15

20

25

30

Standard Extended

Sequence Diagram

C
o

rr
e

c
tn

e
s
s
 (

in
 p

o
in

ts
)

(b) Correctness

Fig. 5: Box plots for the overall spent time and correctness

diagram. Participants who used the standard UML sequence
diagram, on the other side, tended to look for certain pointers
that might assist them inferring the locations of certain program
information. Second, as most of the program information were
either not, wrongly or inappropriately presented in the standard
sequence diagram, participants tended to search for answers
to the questions even more than once in some portions of the
diagram, which for sure results in having a cognitive load.

On the other hand, there might be several factors that led
to having a negative impact on the time requirements of the
participants who used the extended sequence diagrams. The
main important factor is the unfamiliarity of these extensions
to the participants as it was the first time for participants to
see such extensions. This has led to having the participants
requesting a copy of the tutorial presented while they were
conducting the questionnaire. Therefore, referring to the tutorial
for every particular sequence diagram extension in some of
the questions contributed to spending a certain amount of time

as overhead for recalling its meaning. This could be solved by
incorporating the proposed extensions into standard UML as
well as the tool that generate it.

C. Results of the correctness of answers

We test the null hypothesis H20, which states that the use of
our sequence diagram extensions does not affect the accuracy
of the answers given by participants during the comprehension
tasks.

Fig. 5b demonstrates the points obtained by the subjects on
the first eight tasks by means of a box plot. Notice that we take
into consideration the overall points rather than individual ones
(points per task are discussed in subsections V-E and V-F).
The correctness difference is obviously seen from the box plot,
and is even more pronounced than that for the timing results.
Answers provided by the extended diagram-based subjects
were more accurate by 86.11 percent (refer to Table I), that
is obtained through averaging 26.8 out of 32 points compared
to 14.40 points for the standard diagram group. Similar to the
timing results, Table I also shows the results of the Student’s
t-test for response correctness, in which the requirements for
the use of the t-test were met as well. The p-value of 0.0001
implies statistical significance, which means that H20 can be
rejected in support of our alternative hypothesis H2, which
states that the availability of our sequence diagram extensions
improve the correctness of answers provided throughout the
conducted comprehension tasks. Such results also imply that
H30 can be rejected, since obtaining precise answers indicates
the simplicity of our extensions.

D. Reasons for response accuracy differences

We regard the added value of our proposed extensions for
correctness to several factors. The design of our extensions
expresses the code behind them. Participants were confident and
thus able to capture the correct answer of most of the provided
questions. Finally, the questionnaire results presented in Table I
shows that the extended sequence diagram group utilized their
allotted diagram most of the time. However, in some tasks,
participants could provide correct answers but spent a bit more
time. Such results have been further confirmed by the ratings

Fig. 6: Mean values of the correctness (in points) and the time
spent (in minutes) of the tasks of Categories C1, C2, and C3

of participants (Tasks of Category C4), which indicate that
our extensions were precise while they were complex to some
extent.

E. Performance of the tasks of Categories C1, C2, and C3

We examine the performance of the subjects per each task
independently in more detail. Fig. 6 demonstrates the average
time spent and points obtained by each group. Although our
experiment composes eight tasks, only five tasks are considered
in this evaluation (i.e., tasks of Category C4 have a separate
evaluation discussed in subsection V-F). Looking at Fig. 6, we
observe that, for the majority of the tasks (i.e., four out of five
tasks), participants who used the extended diagram were able
to answer questions faster than those who used the standard
diagram. Moreover, the answers of participants who used the
extended diagram were more accurate than those who used the
standard diagram in four out of five tasks. Such results indicates
that the standard diagram requires more time to understand
program interactions and may eventually lead to inaccurate
answers.

1) Task T1: Recursive calls: In this task, participants found
it easier to capture recursive calls using our extended diagram.
All experimental participants achieved the full points (i.e., 4
out of 4) and required less than half the time required by the
control group. The main reason of having only two subjects
out of eleven who could capture recursive methods is the
fact that self and recursive messages are represented using
the same notation in the UML standard of sequence diagrams.
Therefore, such participants consumed too much time tracking
all self-messages for the sake of identifying whether they are
being executed or not. Nevertheless, some control participants
responded that not recursive calls exist.

2) Task T2.1: Chained calls: Timing results of this task
indicate that control participants spent less time in writing
the code representing a chained call UML sequence diagram

than experimental participants. However, answers of the
experimental group obtained higher scores. This result may
indicate that, despite the simplicity of the standard sequence
diagram, it could lead to wrong interpretation of program
interactions. Participants who used the extended diagram were
able to recognize the correct flow of messages with the price
of the time that was mostly spent on recalling the meaning of
the new notation by referring to the provided tutorial.

3) Task T2.2: Chained Calls + Nested Calls: This task also
requires writing a code snippet that generates the excerpt of the
diagram. As the flow of messages here was relying on chained
and nested calls, the diagram excerpts of both the standard
and extended diagrams were somewhat complicated. However,
participants of the experimental group could write the code
faster and more precise than those of the control group. The
mean time spent by the experimental group was about 1.0
minute less and the precision score was 1.0 point more than
the control group.

4) Task T2.3: Lifelines of returned objects: In this task,
we clearly observe that the time spent by the experimental
group was greater than that spent by the control one. The
diagram excerpt used for this task was fairly simple using both
the standard and extended sequence diagrams. This caused the
standard participants responding faster but, due to the limitation
of the UML sequence diagram in creating lifelines for objects
once they are returned from a method call, most participants
could not recognize that the message provided in the excerpt
returns an object to a named variable, which as a result led
to wrong answers. On the other hand, the extended diagram
participants were able to identify the returned object and could
answer the question better but with the price of time spent.

5) Task T3: This is the only task that represents category
C3. Here, subjects are provided with source code and requested
to search for the portion of the supplied diagram representing
that code snippet. Again, the diagram excerpt representing that
code was relatively simpler and participants go catch quickly.
However, we observe the significance of the time invested for
performing this task compared with the other tasks, which is
caused by having participants to search, snapshot, save the
snipped image, and then upload that image as a response to this
task. However, we observe that such time is less than that of the
control group. In addition, we observe that answers provided
by the experimental were less accurate in comparison with
the standard group participants who achieved slightly better
scores (only 0.3 more than the experimental group). While
investigating the root cause of that, we observed that there was
another excerpt of the diagram that is somehow identical to
the one requested in this task. Everything was similar in those
two excerpts except the name of one of the classes used as a
parameter to one of the methods called.

F. Performance of the tasks of Category C4

In the tasks of Category C4, we ask participants to evaluate
the complexity and precision of our extensions in comparison
to the standard notation. To this end, we define the following
two criteria:

• Complexity: this criterion measures how complicated a
diagram is for understanding the actual flow of a given
programming scenario, from the participants’ point of
view. This applies to both the standard and the extended
notation of sequence diagrams.

• Precision: this criterion measures how precise a diagram
is in representing a given programming scenario, from the
participants’ point of view. This involves the capability of
the diagram to cover all aspects of the given code, such
as the types of messages, the composition of different
messages, and the interactions between lifelines.

Participants rate the provided diagrams of tasks T4.1, T4.2,
and T4.3 using the aforementioned criteria in a scale of 0−
4. After collecting the results of all tasks of this kind, we
have aggregated them using the median rather than the mean.
This is because that the mean will not appropriately represent
the overall complexity and criteria as it averages the inputs.
Questions of Category C4 are asked to participants of both the
control and experimental groups.

1) Task T4.1: Task T4.1 comparatively measures the com-
plexity and precision of the standard and extended sequence
diagrams in representing chained calls. In Fig. 7, we observe
that our extended notation is 25% less complex than the
standard notation in representing chained calls. In addition,
we observe that representing chained calls using our extended
notation is 1.3x more precise than the standard notation of
sequence diagrams.

2) Task T4.2: We observe that the standard notation of
sequence diagrams is nearly as twice complex as our extended
notation in representing nested calls. Such a result indicates
that the standard notation may complicate the interaction by
generating multiple separate messages that relate to a single
nested method invocation. Such a representation may lead users
to mistakenly think of a different interaction calling scenario
that may not reflect the actual program behavior. As a result,
software maintainers may find it confusing to trace or inspect
the code when using a standard sequence diagram.

3) Task T4.3: Our extended notation for recursive calls
appears to significantly enhance the representation of recursive
methods and their corresponding method invocations. At the
same time, we observe that it is more precise than the standard
notation as it renders the actual recursive flow of a given
programming scenario.

4) Summary: After a deeper interpretation of the perfor-
mance results obtained per each individual task, we analytically
generalize our discussion. From the results obtained, we observe
that our extensions to the standard sequence diagram are of
great help in grasping the interactions executed throughout the
program or even within a certain kind of control structures. In
addition, our extensions help participants visually distinguish
patterns (e.g., a particular block of interactions). This has led
to gain more accurate information about the flow of control
between method invocations than using the standard sequence
diagram. Despite the simplicity of the standard sequence
diagram in representing some method invocation scenarios,
the responses obtained of participants indicate that such simple

Fig. 7: Mean complexity and precision of the tasks of Category
C4

representation has led to a misinterpretation of the actual flow
of data/control between methods. We have explored such a
trade-off using the tasks of Category C4.

VI. THREATS TO VALIDITY

In this section, we discuss the validity threats and how we
addressed them in our experiment. Such validity threats have
been classified into two different categories, namely internal
validity and external validity.

A. Internal validity

This type of validity refers to the cause-effect inferences
made throughout the analysis. It includes the threats related to
subjects, tasks, and other variables.

1) Subjects: Subjects may be of different levels of expertise.
To mitigate this threat, we ensured that to have a fair distribution
of the subjects to the two groups, depending on their experience
in software engineering in general and in sequence diagrams
in particular. To do this, we first asked subjects from the MS
and PhD level (informal) questions to infer their comparative
experience in the topic of the experiment. For undergraduate
students, we have selected students from the same level (i.e.,
the senior level) and particularly the ones who were working
on similar senior projects with under the supervision of one
professor. Second, we gave a tutorial to give all participants
some background about sequence diagrams and our extensions.
Participants also had access to the tutorial as a reference
throughout the experiment.

2) Tasks: The comprehension tasks may have been biased
toward our proposed extensions. To mitigate this threat, we
have designed our tasks in a way that evens the difficulty of

tasks over the standard and extended diagrams. In other words,
there were tasks in which the standard diagram was supposed
to be easier to answer than the extended diagram. In addition,
the design of the tasks could have been too complex. We have
mitigated this threat by performing pilot studies, which in turn
enabled us to refine the tasks and exclude the harder or time-
consuming tasks. Moreover, the answers of subjects could have
been graded wrongly. We mitigated this threat by (a) using a
model answer, (b) grading by two persons, and (c) resolving
grade disagreements in a discussion with a third person.

3) Miscellaneous: Our statistical analysis may not have
been completely accurate due to having three students with
blank-like answers or similar rating points. In order to mitigate
this threat, we removed the responses of these three students on
all tasks from our analysis. Another threat to validity could be
because participants of the two groups were give two different
diagrams. We have mitigated this threat by generating the
diagrams from the same source code and exporting them as
PDF files.

B. External validity

External threats to validity are concerned with the possibility
of generalizing the results to different contexts, and the
limited representativeness of the tasks, the subjects and the
use of Greenfoot as an object. For example, involving more
participants (e.g., professionals from the industry or students
from various levels) could be a possible threat. Unfortunately,
it was quite difficult to invite more than the involved number
of participants to the experiment, since participation was com-
pletely voluntarily. In addition, inviting people from industry
was also a bit challenging, since they are always concerned
about how to spend their time efficiently. We plan to extend
the number of participants in our experimental evaluation to
include software maintainers from diverse backgrounds and
different levels of experience.

VII. RELATED WORK

Prior research has investigated techniques to support program
comprehension of software behavior using visualization [62],
[63]. Such techniques may employ a static, dynamic, or hybrid
program analysis and represent program interactions in different
forms of visualization.

A. Studies on using standard sequence diagrams

State-of-the-art techniques were proposed to support pro-
gram comprehension using reverse-engineered sequence dia-
grams [38], [54], [64]. Techniques were proposed to compact
sequence diagrams [10], [14], [15], [18], [19], [32], merge se-
quence diagrams [65], make interactive sequence diagrams [4],
[13], [16], provide better performance [12], [30], or address
other software domains [7], [9], [21], [33]. Still, the standard
notation of sequence diagrams does not have enough expressive
power to precisely represent complex program interactions [38],
[66], such as compound method invocations.

B. Studies on using extended sequence diagrams
Prior studies considered extending the existing notation

and primitives of the UML sequence diagram in order to
model security patterns [42], [43], model thread creation,
waiting and notification [44], or show concurrent and distributed
interactions [9], [12]. However, only a few studies attempted
to simply extend the standard notation of sequence diagrams.
For example, Rountev et al. [2] extended sequence diagrams
to support the presentation of intraprocedural control flow of
programs. However, there was no analysis in prior research
on how such extensions can improve program understanding.
To our knowledge, only two studies [27], [34] evaluated
the effectiveness of their proposed sequence diagrams for
program comprehension. Nevertheless, such evaluations were
not conducted under a controlled environment and only involved
a limited number of participants and questions.

C. Studies on using supplementary diagrams
Prior studies proposed to use supplementary diagrams to

add more information about program control flow, such as
State Chart Diagram [28], [29], [67], Markov Chains [12] as
well as Activity and Class Diagrams et al. [5]. Using multiple
diagrams distracts users and reduces program understandability.

D. Studies on using non-standard forms of visualization
Prior studies proposed techniques to represent program

interactions using visualizations forms other than sequence
diagrams. For instance, Cornelissen et al. [45] proposed a way
of representing program interactions using a circular bundle that
presents an overall view of software behavior. Fittkau et al. [68]
proposed to utilize of city metaphor to show the interactions
of software entities. However, such kind of techniques provide
interaction views that deviate from the standard and hide much
details of the program control flow.

VIII. CONCLUSION

This paper proposes sequence diagram extensions to enhance
the visualization of complex method invocation scenarios, such
as nested, chained, and recursive method calls. Understanding
method invocations using our extended reverse-engineered
sequence diagrams allows software maintainers to better track
the values or objects of the invoked methods. We have evaluated
the effectiveness of our extensions for recognizing the actual
behavior of method invocations. To this end, we have conducted
a controlled experiment in which participants perform a set of
comprehension task. Our results indicate that UML sequence
diagrams may give users wrong indications about how the
program works. In addition, we observe that our proposed
sequence diagram extensions for compound method invocations
help participants achieve comprehension tasks with less time
and high ratios of correct responses.

We aim in the future to address other limitations of the
standard sequence diagrams in which the actual flow of
control/data of programs is not well demonstrated, such as static
initialization blocks, type casting, exception handling clauses,
and method calls that appear as part of the specifications of
loops and conditions.

REFERENCES

[1] Lunjin Lu and Dae-Kyoo Kim. Required behavior of sequence diagrams:
Semantics and conformance. ACM Transactions on Software Engineering
and Methodology (TOSEM), 23(2):15, 2014.

[2] Atanas Rountev, Olga Volgin, and Miriam Reddoch. Static control-flow
analysis for reverse engineering of UML sequence diagrams. ACM
SIGSOFT Software Engineering Notes, 31(1):96–102, 2005.

[3] Atanas Rountev, Scott Kagan, and Jason Sawin. Coverage criteria for
testing of object interactions in sequence diagrams. In International
Conference on Fundamental Approaches to Software Engineering, pages
289–304. Springer, 2005.

[4] Richard Sharp and Atanas Rountev. Interactive exploration of UML
sequence diagrams. In Visualizing Software for Understanding and
Analysis, 2005. VISSOFT 2005. 3rd IEEE International Workshop on,
pages 1–6. IEEE, 2005.

[5] Elena Korshunova, Marija Petkovic, MGJ van den Brand, and Moham-
mad Reza Mousavi. CPP2XMI: reverse engineering of UML class,
sequence, and activity diagrams from C++ source code. In 13th Working
Conference on Reverse Engineering 2006 (WCRE’06), pages 297–298.
IEEE, 2006.

[6] Liliana Martinez, Claudia Pereira, and Liliana Favre. Recovering
sequence diagrams from object-oriented code: An ADM approach. In
Evaluation of Novel Approaches to Software Engineering (ENASE), 2014
International Conference on, pages 1–8. IEEE, 2014.

[7] Serguei Roubtsov, Alexander Serebrenik, Aurélien Mazoyer, Mark
van den Brand, and Ella Roubtsova. I2SD: reverse engineering Sequence
Diagrams Enterprise Java Beans from with interceptors. IET software,
7(3):150–166, 2013.

[8] Paolo Tonella and Alessandra Potrich. Reverse engineering of the
interaction diagrams from c++ code. In Software Maintenance, 2003.
ICSM 2003. Proceedings. International Conference on, pages 159–168.
IEEE, 2003.

[9] Lionel C Briand, Yvan Labiche, and Johanne Leduc. Toward the reverse
engineering of UML sequence diagrams for distributed Java software.
IEEE Transactions on Software Engineering, 32(9):642–663, 2006.

[10] Hassen Grati, Houari Sahraoui, and Pierre Poulin. Extracting sequence
diagrams from execution traces using interactive visualization. In 17th
Working Conference on Reverse Engineering (WCRE), 2010., pages
87–96. IEEE, 2010.

[11] Rainer Oechsle and Thomas Schmitt. JAVAVIS: Automatic program
visualization with object and sequence diagrams using the Java debug
interface (JDI). In Software Visualization, pages 176–190. Springer,
2002.

[12] Matthias Rohr, André van Hoorn, Jasminka Matevska, Nils Sommer, Lena
Stoever, Simon Giesecke, and Wilhelm Hasselbring. Kieker: Continuous
monitoring and on demand visualization of Java software behavior.
In Proceedings of the IASTED International Conference on Software
Engineering. ACTA Press, 2008.

[13] Takashi Ishio, Yui Watanabe, and Katsuro Inoue. AMIDA: A sequence
diagram extraction toolkit supporting automatic phase detection. In
Companion of the 30th International Conference on Software Engineering,
pages 969–970. ACM, 2008.

[14] Koji Taniguchi, Takashi Ishio, Toshihiro Kamiya, Shinji Kusumoto, and
Katsuro Inoue. Extracting sequence diagram from execution trace of
java program. In Principles of Software Evolution, Eighth International
Workshop on, pages 148–151. IEEE, 2005.

[15] Yui Watanabe, Takashi Ishio, Yoshiro Ito, and Katsuro Inoue. Visualizing
an execution trace as a compact sequence diagram using dominance
algorithms. Program Comprehension through Dynamic Analysis, page 1,
2008.

[16] Kai Koskimies and Hanspeter Mossenbock. Scene: Using scenario
diagrams and active text for illustrating object-oriented programs. In Pro-
ceedings of the 18th International Conference on Software Engineering,
1996, pages 366–375. IEEE, 1996.

[17] Tim Souder, Spiros Mancoridis, and Maher Salah. Form: A framework
for creating views of program executions. In Proceedings of the IEEE
International Conference on Software Maintenance (ICSM’01), page 612.
IEEE Computer Society, 2001.

[18] Philippe Dugerdil and Julien Repond. Automatic generation of abstract
views for legacy software comprehension. In Proceedings of the 3rd
India software engineering conference, pages 23–32. ACM, 2010.

[19] Juanjuan Jiang, Johannes Koskinen, Anna Ruokonen, and Tarja Systa.
Constructing usage scenarios for API redocumentation. In 15th IEEE

International Conference on Program Comprehension (ICPC), 2007.,
pages 259–264. IEEE, 2007.

[20] Tewfik Ziadi, Marcos Aurélio Almeida Da Silva, Lom-Messan Hillah,
and Mikal Ziane. A fully dynamic approach to the reverse engineering
of UML sequence diagrams. In 16th IEEE International Conference
on Engineering of Complex Computer Systems (ICECCS), 2011., pages
107–116. IEEE, 2011.

[21] Muhammet Ali Sag and Ayça Tarhan. Measuring COSMIC software size
from functional execution traces of Java business applications. In Software
Measurement and the International Conference on Software Process and
Product Measurement (IWSM-MENSURA), 2014 Joint Conference of the
International Workshop on, pages 272–281. IEEE, 2014.

[22] Kunihiro Noda, Takashi Kobayashi, Tatsuya Toda, and Noritoshi Atsumi.
Identifying Core Objects for Trace Summarization Using Reference
Relations and Access Analysis. In Computer Software and Applications
Conference (COMPSAC), 2017 IEEE 41st Annual, volume 1, pages
13–22. IEEE, 2017.

[23] Shahar Maoz and David Harel. On tracing reactive systems. Software &
Systems Modeling, 10(4):447–468, 2011.

[24] David Lo and Shahar Maoz. Specification mining of symbolic scenario-
based models. In Proceedings of the 8th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering, pages
29–35. ACM, 2008.

[25] David Lo, Shahar Maoz, and Siau-Cheng Khoo. Mining modal scenario-
based specifications from execution traces of reactive systems. In
Proceedings of the twenty-second IEEE/ACM international conference
on Automated software engineering, pages 465–468. ACM, 2007.

[26] Giovanni Malnati, Caterina Maria Cuva, and Claudia Barberis. JThread-
Spy: teaching multithreading programming by analyzing execution traces.
In Proceedings of the 2007 ACM workshop on Parallel and distributed
systems: testing and debugging, pages 3–13. ACM, 2007.

[27] Kunihiro Noda, Takashi Kobayashi, and Kiyoshi Agusa. Execution trace
abstraction based on meta patterns usage. In 19th Working Conference
on Reverse Engineering (WCRE), 2012., pages 167–176. IEEE, 2012.

[28] Tarja Systa. On the relationships between static and dynamic models
in reverse engineering java software. In Proceedings. Sixth Working
Conference on Reverse Engineering, 1999, pages 304–313. IEEE, 1999.

[29] Tarja Systä, Kai Koskimies, and Hausi Müller. Shimba−an environment
for reverse engineering Java software systems. Software: Practice and
Experience, 31(4):371–394, 2001.

[30] Yvan Labiche, Bojana Kolbah, and Hossein Mehrfard. Combining Static
and Dynamic Analyses to Reverse-Engineer Scenario Diagrams. In 29th
IEEE International Conference on Software Maintenance (ICSM), 2013.,
pages 130–139. IEEE, 2013.

[31] Brian A Malloy and James F Power. Exploiting UML dynamic object
modeling for the visualization of C++ programs. In Proceedings of the
2005 ACM symposium on Software visualization, pages 105–114. ACM,
2005.

[32] Del Myers, Margaret-Anne Storey, and Martin Salois. Utilizing debug
information to compact loops in large program traces. In 14th European
Conference on Software Maintenance and Reengineering (CSMR), 2010.,
pages 41–50. IEEE, 2010.

[33] Andrew R Dalton and Jason O Hallstrom. A toolkit for visualizing the
runtime behavior of TinyOS applications. In The 16th IEEE International
Conference on Program Comprehension (ICPC), pages 43–52. IEEE,
2008.

[34] Abdelwahab Hamou-Lhadj and Timothy Lethbridge. Summarizing the
content of large traces to facilitate the understanding of the behaviour of
a software system. In 14th IEEE International Conference on Program
Comprehension (ICPC), pages 181–190. IEEE, 2006.

[35] Madhusudan Srinivasan, Jeong Yang, and Young Lee. Case studies
of optimized sequence diagram for program comprehension. In 2016
IEEE 24th International Conference on Program Comprehension (ICPC),
pages 1–4. IEEE, 2016.

[36] Janice Ka-Yee Ng, Yann-Gaël Guéhéneuc, and Giuliano Antoniol.
Identification of behavioural and creational design motifs through
dynamic analysis. Journal of Software: Evolution and Process, 22(8):597–
627, 2010.

[37] Tatsuya Toda, Takashi Kobayashi, Noritoshi Atsumi, and Kiyoshi Agusa.
Grouping objects for execution trace analysis based on design patterns.
In Software Engineering Conference (APSEC), 2013 20th Asia-Pacific,
volume 2, pages 25–30. IEEE, 2013.

[38] Taher Ahmed Ghaleb, Musab A Alturki, and Khalid Aljasser. Program
comprehension through reverse-engineered sequence diagrams: A system-

atic review. Journal of Software: Evolution and Process, 30(11):e1965,
2018.

[39] Shaohua Xie, Eileen Kraemer, and RE Kurt Stirewalt. Empirical
evaluation of a UML sequence diagram with adornments to support
understanding of thread interactions. In Program Comprehension, 2007.
ICPC’07. 15th IEEE International Conference on, pages 123–134. IEEE,
2007.

[40] Vahid Garousi, Lionel C Briand, and Yvan Labiche. Control flow
analysis of UML 2.0 sequence diagrams. In Model Driven Architecture–
Foundations and Applications, pages 160–174. Springer, 2005.

[41] Elizabeth Burd, Dawn Overy, and Ady Wheetman. Evaluating using
animation to improve understanding of sequence diagrams. In Program
Comprehension, 2002. Proceedings. 10th International Workshop on,
pages 107–113. IEEE, 2002.

[42] Alexander van den Berghe, Riccardo Scandariato, Koen Yskout, and
Wouter Joosen. Design notations for secure software: a systematic
literature review. Software & Systems Modeling, pages 1–23, 2015.

[43] Jan Jürjens. Towards development of secure systems using UMLsec.
In Fundamental approaches to software engineering, pages 187–200.
Springer, 2001.

[44] Cyrille Artho, Klaus Havelund, and Shinichi Honiden. Visualization of
concurrent program executions. In Computer Software and Applications
Conference, 2007. COMPSAC 2007. 31st Annual International, volume 2,
pages 541–546. IEEE, 2007.

[45] Bas Cornelissen, Danny Holten, Andy Zaidman, Leon Moonen, Jarke J
Van Wijk, and Arie Van Deursen. Understanding execution traces using
massive sequence and circular bundle views. In 15th IEEE International
Conference on Program Comprehension (ICPC), pages 49–58. IEEE,
2007.

[46] Florian Fittkau, Alexander Krause, and Wilhelm Hasselbring. Software
landscape and application visualization for system comprehension with
ExplorViz. Information and Software Technology, 2016.

[47] Taher Ahmed Ghaleb, Khalid Abdullah Aljasser, and Musab A Alturki.
Reverse engineering method, system and computer program thereof,
February 2020. US Patent 10,552,286.

[48] Grady Booch, James Rumbaugh, and Ivar Jacobson. The unified modeling
language user guide. Pearson Education India, 1999.

[49] Bas Cornelissen, Andy Zaidman, and Arie van Deursen. A controlled
experiment for program comprehension through trace visualization. IEEE
Transactions on Software Engineering, 37(3):341–355, 2011.

[50] Michael J Pacione, Marc Roper, and Murray Wood. A novel software
visualisation model to support software comprehension. In Proceedings
of the 11th Working Conference on Reverse Engineering, 2004., pages
70–79. IEEE, 2004.

[51] Florian Fittkau, Santje Finke, Wilhelm Hasselbring, and Jan Waller.
Comparing trace visualizations for program comprehension through
controlled experiments. In Proceedings of the 2015 IEEE 23rd
International Conference on Program Comprehension, pages 266–276.
IEEE Press, 2015.

[52] Richard Wettel, Michele Lanza, and Romain Robbes. Software systems as
cities: a controlled experiment. In Proceedings of the 33rd International
Conference on Software Engineering, pages 551–560. ACM, 2011.

[58] Taher Ahmed Ghaleb, Khalid Abdullah Aljasser, and Musab A Alturki.
Software engineering method including tracing and visualizing, May
2020. US Patent App. 16/778,167.

[53] Massimiliano Di Penta, RE Kurt Stirewalt, and Eileen Kraemer. Designing
your next empirical study on program comprehension. In 15th IEEE
International Conference on Program Comprehension (ICPC), pages
281–285. IEEE, 2007.

[54] Chris Bennett, Del Myers, M-A Storey, Daniel M German, David Ouellet,
Martin Salois, and Philippe Charland. A survey and evaluation of
tool features for understanding reverse-engineered sequence diagrams.
Journal of Software Maintenance and Evolution: Research and Practice,
20(4):291–315, 2008.

[55] Shaohua Xie, Eileen Kraemer, RE Kurt Stirewalt, Laura K Dillon, and
Scott D Fleming. Assessing the benefits of synchronization-adorned
sequence diagrams: two controlled experiments. In Proceedings of the
4th ACM symposium on Software visualization, pages 9–18. ACM, 2008.

[56] Online Appendix. https://taher-ghaleb.github.io/papers/vissoft 2020/
appendix.html.

[57] Taher Ahmed Ghaleb. The role of open source software in program
analysis for reverse engineering. In Open Source Software Computing
(OSSCOM), 2016 2nd International Conference on, pages 1–6. IEEE,
2016.

[59] Taher Ahmed Ghaleb, Khalid Abdullah Aljasser, and Musab A Alturki.
Method including collecting and querying source code to reverse engineer
software, July 2020. US Patent App. 16/778,127.

[60] Frank J Massey Jr. The Kolmogorov-Smirnov test for goodness of fit.
Journal of the American statistical Association, 46(253):68–78, 1951.

[61] Howard Levene. Robust tests for equality of variances. Contributions to
probability and statistics: Essays in honor of Harold Hotelling, 2:278–
292, 1960.

[62] Abdelwahab Hamou-Lhadj and Timothy C Lethbridge. A survey of trace
exploration tools and techniques. In Proceedings of the 2004 Conference
of the Centre for Advanced Studies on Collaborative Research, pages
42–55. IBM Press, 2004.

[63] Michael J Pacione, Marc Roper, and Murray Wood. A comparative
evaluation of dynamic visualisation tools. In 20th Working Conference
on Reverse Engineering (WCRE), 2013., pages 80–89. IEEE Computer
Society, 2003.

[64] Matthias Merdes and Dirk Dorsch. Experiences with the development
of a reverse engineering tool for UML sequence diagrams: a case study
in modern Java development. In Proceedings of the 4th international
symposium on Principles and practice of programming in Java, pages
125–134. ACM, 2006.

[65] Alan W Biermann and Jerome A Feldman. On the synthesis of finite-
state machines from samples of their behavior. IEEE Transactions on
Computers, 100(6):592–597, 1972.

[66] Taher Ahmed Ghaleb. Extending sequence diagrams for better compre-
hension of program control-flow. Master’s thesis, King Fahd University
of Petroleum and Minerals, 2015.

[67] Swaminathan Jayaraman, Bharat Jayaraman, et al. Towards program exe-
cution summarization: Deriving state diagrams from sequence diagrams.
In Seventh International Conference on Contemporary Computing (IC3),
2014., pages 299–305. IEEE, 2014.

[68] Florian Fittkau, Jan Waller, Christian Wulf, and Wilhelm Hasselbring.
Live trace visualization for comprehending large software landscapes:
The ExplorViz approach. In First IEEE Working Conference on Software
Visualization (VISSOFT), 2013., pages 1–4. IEEE, 2013.

https://taher-ghaleb.github.io/papers/vissoft_2020/appendix.html
https://taher-ghaleb.github.io/papers/vissoft_2020/appendix.html

