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Abstract. Mapping natural language (NL) statements into SQL queries
allows users to interact with systems through everyday language. Se-
mantic parsing has seen a growing interest over the past decades. In
this paper, we extend single hidden layer feedforward network (SLFN)
by adding the Kullback-Liebler (KL) divergence parameter to its objec-
tive function. We refer to this algorithm as Sparse SLFN (S-SLFN) which
can learn whether an SQL query answers a particular NL question. With
Bag of Words (BoW) representing the questions and the queries, the al-
gorithm, by enforcing sparsity, is meant to retain robust features repre-
senting informative relationships and structure of the data. Experimental
results show that S-SLFN outperforms SLFN and other algorithms for
the GeoQueries dataset by a respectable margin.

Keywords: Single-hidden Layer Feedforward Network (SLFN), Spar-
sity, Semantic Parsing.

1 Introduction

Powerful consumer handheld devices became increasingly dominant over the
past years, underscoring the need to simplify complex tasks for users not well-
acquainted with technology. One such task is to retrieve data records corre-
sponding to the user’s query. To simplify the task is to allow users to ask for
information in everyday language. Therefore, a system should be able to map
the received natural language (NL) statement into SQL queries to fetch the right
records.

Some early methods for semantic parsing adopted formal rules for mapping
NL statements to machine instructions. Jones et al. [1] developed tree transduc-
ers for the mapping, with a variational Bayesian inference algorithm providing
elegant solutions to the problem. Further, Jones et al. [2] presented an approach
that makes use of synchronous context free graph grammars. It constructs an
intermediate graph-structured meaning representation, which, with the applica-
tion of synchronous hyperedge replacement grammars, can be translated into
either its respective machine instruction or natural language statement.
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Other learning algorithms employing probability functions have emerged as
well. Poon and Domingos [3] developed a deep network whose inputs represent
the dependency trees of given sentences, and whose hidden features represent
clusters of meaning expressions, realizing a novel unsupervised approach to se-
mantic parsing. Involving Support Vector Machines, Giordani and Moschitti [4]
provided an interesting perspective to semantic parsing by constructing cus-
tom kernels and applying them to datasets containing NL statements with their
matching SQL statements.

The work in this paper is inspired by the unsupervised feature extraction al-
gorithm, Sparse Auto-encoders (SAE) [5]. From image pixels, SAE would extract
new robust features representing interesting structural information of the pixels,
meant to hold essential information of the image. However, when facing datasets
containing only few question-SQL matching pairs, the features extracted from
learning to reconstruct them would not likely be robust.

Classifiers, on the other hand, can leverage samples of non-matching question-
query pair representing the combined features of questions and their non-matching
queries, to efficiently construct the decision function. Furthermore, what advan-
tages SAE has in extracting features can be added to single-hidden layer feedfor-
ward networks (SLFN). Therefore, we developed a sparse SLFN containing the
Kullback-Liebler (KL) divergence parameter in its objective function. By injecting
sparsity, the hidden layer would learn robust hidden features representing superior
structural information that would otherwise foster correctmapping of natural lan-
guage (NL) statements to their respective SQL queries.

While the first step of the approach involves Bag of Words (BoW) extraction
of terms and their occurrences as features, KL divergence ensures that the rela-
tionships between these features developed in the hidden layer are informative by
discarding those that do not contribute much in building the decision function.

Results on the GeoQueries showed that S-SLFN outperformed single hidden
layer feedforward network [6], Logistic Regression [7], and Support Vector Ma-
chines [8], by at least 2% AUC. The process involves the classifier training on
the training dataset - containing the correct and incorrect pairs of NL statement
and SQL query - and then predicting the SQL queries closest in answering the
NL statements in the testing set.

The remainder of the paper is organized as follows. Section 2 provides technical
background; section 3 presents the proposed approach; section 4 explains the
experimentation results and analysis; section 5 concludes the paper.

2 Technical Background

2.1 Single-Hidden Layer Feedforward Neural Network

Assume a single hidden layer feedforward network SLFN with L hidden neurons
and n training samples. Consider a matrix X ∈ Rn × Rm defining the input
vectors as {xi|xi ∈ Rm}for i = 0, 1, ..., n where m is the number of input features
representing a vector xi, the bias vectors b1 ∈ RL and b2 ∈ R, and the target
vector Y ∈ Rn defined as yi for i = 1, 2, ..., n where yi is the respective output of
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(a) Single-layer Feed-Forward Network. (b) Sparse auto-encoder.

Fig. 1. Neural Networks

xi. Let us also consider the matrices W1 ∈ Rm×RL, and W2 ∈ RL representing
the outgoing weights of the input layer and the hidden layer, respectively. Then,
the output of SLFN is,

f(x) = W2 g(X ·W1 + b1) + b2 (1)

where g(x) : R → R is the activation function (e.g. sigmoid and hyperbolic
tanh).

The objective function set as cross-entropy is defined as follows,

J(W, b;x, y) = −f(x) ln y − (1 − f(x)) ln(1− y) (2)

Taking the gradient of eq. (2) with respect to the parameters would allow
updating the parameters as follows,

Wi := Wi − α

[
1

n
ΔWi

]

bi := bi − α

[
1

n
Δbi

] (3)

where α is the learning rate, ΔWi is the weight change in terms of the objective
function derivative with respect to weight i, and Δbi is the bias change in terms
of the objective function derivative with respect to the bias unit i. An SLFN
network is shown in Fig. 1 (a).

2.2 Sparse Auto-encoders

Illustrated in Fig. 1 (b), Sparse Auto-encoders aim to extract a robust represen-
tation - retained in the hidden layer - of the data by learning to reconstruct the
input features. In addition to the objective function defined for SLFN, Sparse
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Auto-encoders include a penalty term called the Kullback-Liebler (KL) diver-
gence,

KL(p||p̂) = p log
p

p̂j
+ (1− p) log

1− p

1− p̂j
(4)

where the value ρ is manually set to control the values of ρ̂ - the average acti-
vation values of a hidden node over the data samples - by adding a penalty cost
whenever ρ̂ differs from ρ. This controls the degree of sparsity of the features
retained in the hidden layer.

3 Proposed Approach

This section provides details of the proposed approach, whose scheme is illus-
trated in Fig. 2.

Step	1
Get	the
Question-Query	
pairs

Step	2
Use	BoW	to	get	
the	pairs'	
feature	vectors

Step	3
Split	data	into
80%	Training
20%	Testing

Step	4
Cross-validate	
the	classifier
on	the	dataset

Fig. 2. Flow diagram of proposed procedure

3.1 Feature Representation

Given a set of samples (xi, yi), i = 1, 2, ..., N where x ∈ R
(n+m) and yi = {0, 1},

n and m are the number of features representing question qi and SQL query
si, respectively. For qi and si that match, yi = 1; otherwise, yi = 0. We say
qi matches si when si returns results relevant to qi. It is worth noting that for
datasets containing no non-matching question-query pairs (negative sample), by
the Cartesian product, we create negative samples by concatenating the feature
vector of each question with each wrong query.

These features are extracted using Bag of Words (BoW) [9], where for each
unique term, except for the stop words - like ‘a’, and ‘the’, the number of occur-
rences are counted and given in the feature vector.

To illustrate this, given feature vectors representing qi and si, as in Fig. 3.
We join the feature vectors together to form the question-query pair qsi.

The benefit of BoW lies in their ability to compactly, and effectively summa-
rize the features defining the statements.

0 1 0 1Question	Feature	Vector
1 1 0 1Query	Feature	Vector Join 0 1 0 1 1 1 0 1Question-Query	Pair	Feature	Vector

Fig. 3. Joining the feature vectors to form the question-query pair
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3.2 Sparse Single-Layer Feed-Forward Network

We developed a Sparse Single-layer Feed-Forward Network (S-SLFN) that ex-
tends SLFN by adding the sparsity term - Kullback-Liebler (KL) divergence
- to the objective function given in eq. (2). The term works by discouraging
redundant and uninformative hidden activations. In other words, on training,
the algorithm discards hidden activations whose penalty cost, determined by
KL, supersedes their contributions to constructing the decision boundary. To
put this under mathematical formulation, the modified objective function is the
combination of J(W, b;x, y) in eq. (2) and KL(p||p̂) in eq. (4), which is,

JSparse(W, b) = J(W, b;x, y) +KL(p||p̂) (5)

The value for ρ is set arbitrarily. ρ penalizes the objective function when the
average hidden activation values of a hidden node over the data samples - given
as ρ̂ - is different from ρ. The Kullback-Liebler (KL) divergence measures the
distance between the two distributions, ρ and ρ̂. It is asymmetric in the sense
that a ρ̂ larger than ρ is penalized with higher cost than if it were smaller, even
when the difference is equal. This provides a favorable outcome, as having lower
penalty for smaller ρ̂ would serve the main objective of the algorithm: to extract
a sparse set of hidden features.

Since the meaning of a phrase is not necessarily reflected by the meaning of the
individual constituent words, the sparsity term would provide more information
about a statement than word occurrences. It allows for the extraction of robust
features describing the essence of a statement while eliminating possibly noisy
information from redundant words.

4 Experimentation

4.1 Experimental Setup

We ran the experiments in a machine with 3.6 GHz quad-core CPU and 32 GB
RAM operating a 64-bit Windows 7. For a fair, reliable assessment, we split the
data into 80% training set and 20% testing set in a stratified manner. As such,
both sets have the same ratio of positive samples to negative samples. We re-
peated the cross-validation five times and took the average of their scores, based
on the metric Area Under the Receiver Operating Characteristic (ROC) curve
(AUC). The reason for such metric is that, the datasets are imbalanced, as they
contain negative samples (non-matching question-SQL query pairs) that highly
outnumber matching pairs. After all, AUC is a popular metric for imbalanced
datasets [10].

For the benchmark, we evaluated the following algorithms with the described
settings (unless specified otherwise),

1. Logistic Regression with stochastic gradient descent and iterations till con-
vergence.
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2. Three different Support Vector Machines (SVM): SVM with linear kernel,
SVM with polynomial kernel of degree 3, and SVM with Radial Basis Func-
tion (RBF) kernel.

3. Single-hidden layer feedforward neural network (SLFN) with 25 hidden neu-
rons, stochastic gradient descent and iterations till convergence

4. Sparse (SLFN) with 25 hidden neurons, stochastic gradient descent, itera-
tions till convergence, and ρ set to 0.12 for GeoQueries, and 0.1 for Rest-
Queries.

While the choice of ρ is subjective, we found that these values has lead to better
results than otherwise.

For each question-query pair from the testing set, the classifier outputs the
probability that the pair matches. The AUC metric then evaluates the perfor-
mance of the computed probabilities.

4.2 Experimental Design

We evaluated the learning algorithms on two datasets: GeoQueries1 and
RestQueries1. Table 1 reports the statistics of the two datasets including the
number of samples, and the number of extracted BoW features. It is notewor-
thy to mention that, while the original datasets contained only positive sam-
ples (matching pairs), by the Cartesian product explained in section 3.1, we
introduced a large number of negative samples to help classifiers develop robust
decision functions.

Table 1. Generated dataset statistics

Dataset Questions Queries Positive
samples

Negative
samples

BoW
features

GeoQueries 149 80 164 11756 89

RestQueries 126 77 852 8850 21

Below we show an example of a matching question-query pair from the Geo-
Queries dataset.

– Question: what is the capital of the state with the largest population?
– Query: select distinct state.capital from state where

state.population=(select max(state.population) from state)
– Extracted BoW terms: what, capital, state, largest, population, select,

distinct, capital, max

The feature vector representing the question-query pair above will contain ‘1’s
in the indices corresponding to the extracted BoW terms and ‘0’ s for the rest of
the BoW terms. The construction of this feature vector is explained in section
3.1.
1 Available at: http://disi.unitn.it/~agiordani/corpora.htm

http://disi.unitn.it/~agiordani/corpora.htm
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4.3 Results and Analysis

We trained the algorithms on the GeoQuery dataset to evaluate the hypothesis
that S-SLFN achieves the better performance. Table 2 shows that S-SLFN has
indeed topped the benchmark with a solid improvement of 2% over the next best
achieving algorithm - SVM with RBF kernel.

This suggests that the Kullback-Liebler (KL) divergence term retained bet-
ter features of the training samples, whereas SLFN and SVM retained weaker
features that are possibly redundant and uninformative.

Finally, testing the algorithms on the RestQuery dataset have shown another
favorable achievement of S-SLFN. As illustrated in Table 2, while S-SLFN did
not see a vast improvement over SLFN, it still maintained its first position as
the best performing classifier.

Why S-SLFN did not improve much over SLFN can be attributed to the fact
that only few BoW features are extracted from RestQueries dataset (Table 1).
Because of the limited number of hidden features that can be extracted from the
dataset, S-SLFN and SLFN would more or less retain similar features.

Table 2. Comparison between algorithms using the AUC performance metric

Algorithm GeoQueries RestQueries

Logistic Regression (LR) 0.84± 0.019 0.80 ± 0.015

SVM with Linear Kernel 0.71± 0.035 0.47 ± 0.076

SVM with polynomial kernel 0.80± 0.026 0.54 ± 0.032

SVM with RBF kernel 0.91± 0.021 0.49 ± 0.086

Single-layer Feed-Forward Network (SLFN) 0.89± 0.038 0.82 ± 0.010

Sparse SLFN (S-SLFN) 0.93 ± 0.020 0.83 ± 0.009

For RestQueries, each SVM achieved low, yet highly unstable AUC results
- as illustrated by the high standard deviation given in Table 2, unlike Logis-
tic Regression, SLFN and S-SLFN. This suggests that SVM is not efficient for
RestQueries’ type of data, as SVM labeled almost all samples as non-matching
pairs, favoring the majority class (negative samples) over the minority (positive
samples).

5 Conclusion

We developed a sparse single-hidden feedforward network, a supervised learning
algorithm for semantic parsing, specifically for mapping Natural language ques-
tions to formal SQL queries. The Kullback-Liebler (KL) divergence parameter
in the objective function allows for learning robust features for the hidden layer.
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Experimental results have justified the efficacy of S-SLFN over the standard
SLFN when the number of BoW is large. For future work, it would be interest-
ing to apply S-SLFN for other problems under semantic parsing, and for online
(real-time) mapping of natural questions to SQL queries.
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Wolska, M. (eds.) NLDB 2009. LNCS, vol. 5723, pp. 207–221. Springer, Heidelberg
(2010)

5. Ng, A.: Sparse autoencoder
6. Sanger, T.D.: Optimal unsupervised learning in a single-layer linear feedforward

neural network. Neural Networks 2(6), 459–473 (1989)
7. Hosmer Jr., D.W., Lemeshow, S., Sturdivant, R.X.: Applied logistic regression.

Wiley. com (2013)
8. Hearst, M.A., Dumais, S., Osman, E., Platt, J., Scholkopf, B.: Support vector

machines. IEEE Intelligent Systems and their Applications 13(4), 18–28 (1998)
9. Wallach, H.M.: Topic modeling: beyond bag-of-words. In: Proceedings of the 23rd

International Conference on Machine Learning, pp. 977–984. ACM (2006)
10. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Transactions on

Knowledge and Data Engineering 21(9), 1263–1284 (2009)


	Sparse Single-Hidden Layer FeedforwardNetwork for Mapping Natural LanguageQuestions to SQL Queries
	1 Introduction
	2 Technical Background
	2.1 Single-Hidden Layer Feedforward Neural Network
	2.2 Sparse Auto-encoders

	3 Proposed Approach
	3.1 Feature Representation
	3.2 Sparse Single-Layer Feed-Forward Network

	4 Experimentation
	4.1 Experimental Setup
	4.2 Experimental Design
	4.3 Results and Analysis

	5 Conclusion
	References




